
Chaos Project

David Jiang

May 2023

1 Introduction

The Chaos Game is a curious method in the generation of certain fractals. The
one that I will be talking about will generate the Sierpinski triangle/gasket.

The game starts off with the three vertices of an equilateral triangle as well as
a random point anywhere on the plane. The image is kind of hard to see:

From the red point, we select a vertex at random and draw a new point in the
middle of our red point and the vertex we picked.

1

We will continue from this new point continuing our process. You will notice
that once you do thousands of points, it will start to look like the Sierpinski
triangle.
Iterations every 500 or 1,000 times:

2 Code

I will briefly document and discuss how I programmed my own version of the
game. Although I believe my method is probably not very good, it was just the
first thing I thought of. My program is created using Python and particularly
the interface is created using PyGame. I’m not extremely familiar with either,
but I knew and was able to learn enough to complete this program.

I used some general boilerplate code I found online for animating a stage for the
game. Then I created an array which contained the coorindates of our original 3
vertices. Using Python random, I generate a random point within the confines
of the canvas. As I’ve mentioned, this can be anywhere in the plane, but for
simplicity I bounded it. This point is saved in a seperate array, this array is
responsible for storing all of the coordinates of points that we’ve selected since
PyGame requires us to redraw each frame as we go on.

I added some artistic flare by creating a bunch of hue’s of green that the points
shuffle between. I just thought it made the program look a bit more interesting
rather than a uniform color. There is an option to remove this as well. I added
a few buttons that denote how many dots it will add. I stole some code online
that added functionality for the buttons. There was one bug that I did need to
fix. Since the code I found online made it so that the button triggered anytime

2

the mouse button was pressed and it was hovering above the confines of the
button, it would click multiple times per click. That defeated the purpose of
adding one dot at a time. So I decided to change it so that each button has
latency of 0.1 seconds. This disallows you from spam clicking it super fast, but
fixes the issue of the button clicking multiple times which I found to be a more
annoying problem.

I wanted to create a method to draw circles. But there was something finicky
going on with PyGame disallowing me to do so, so instead I just copy and pasted
the code responsible for picking and drawing points in the function for all 3 of the
buttons. This clutters the code a decent amount, and if I were programming
it seriously I would figure this issue out. But all it does essentially is pick a
random point in our vertices array and then find the midpoint of the previous
point and the vertex. After that it would add this new point to our points array
and then reassign the previous points coordinate.

3

The code for the game itself is not too difficult logically speaking. There are
just some fun things you can do with the graphic interface that I found inter-
esting. There were other things that I intended on adding. In my version you
can choose your own scale factor, number of points, and where the points are.
I wanted to add the ability to select what point you wanted by drawing it on
the board, but I never got around to adding this. There are also other rule sets
that can be used. Such as the previously used vertex can’t be used again which
generate certain fractals for 4 corners, but I also didn’t add this functionality.

Here is a link to watch a video of the program running: Link!

3 Understanding the game

Here we will prove that this game does converge to the Sierpinski triangle.
This proof is adapted from a version of Arun Chagantys’s proof on his website .
We will do this by proving 3 statements that will prove the algorithm as a whole.

1. Any point on the Sierpinski triangle will stay on the Sierpinski triangle
after iterating.

4

https://drive.google.com/file/d/1R6RGFJctQ5aQ5QORdukzA2yYChB3gUEK/view?usp=share_link
https://arun.chagantys.org/technical/2020/04/28/chaos-game.html

2. Any point not on the Sierpinski triangle will converge to a point on the
Sierpinski triangle after iterating.

3. All points on the Sierpinski triangle will be arbitrarily close a point gen-
erated in finite time by our game.

3.1 Statement 1

Each sub-triangle in our fractal can be defined using a ternary expansion. We
denote the top triangle as having an address of 0, left triangle as 1, and right
triangle as 2.

This is very similar to our construction of our Cantor set addresses. Each trian-
gle can also be uniquely defined by their circumcenter. I will show now that for
any circumcenters you select, for an of the 3 vertices you select, you will always
end up being on another circumcenter, which will define another subtriangle.

We will first conjecture the following claim:

Claim: Given a ternary expansion for the center of a subtriangle to be x, the
points on the triangle will all get mapped to the triangles 0x, 1x, or 2x depend-
ing on which vertex is selected.

Example:

5

This sends the subtriangle from 003 to 1003. From a cursory view, it looks
approximately like the midpoint between 003 and the left vertex. We will show
that it is more rigorously.

Proof : Consider the triangles that I’ve highlighted:

We will show that these two triangles are similar and that their scale factor
is 1

2 . We know that their long side is 1
2 the size of each other since we’re

partitioning them by the equilateral triangle. By vertical angles we know that
they share 2 angles with each other. By angle-angle similarity, that means these
two triangles are similar and differe by a scale factor of 1

2 . In any construction
of points, this will remain true because they will always share those angles and

6

differ by a scale of 1
2 . Since the points around the circumcenter are uniquely

defined by the circumcenter, that means that the entire triangle will be mapped
in a similar manner. Therefore, any point on the Sierpinski triangle will remain
on the Sierpinski triangle after iterating through our game.

3.2 Statement 2

Next we need to show that any point that is not on the Sierpinski triangle will
eventually converge to a point on the Sierpinski triangle after we iterate enough
times.

Given a point p0 that is not on our Sierpinski triangle, let’s say that q0 is
the point that is closest to p0 that is on the Sierpinski triangle. We will show
that as we continue our game, these two points will converge to the same point.

Let’s let ε0 = |p0 − q0|. Each iteration we will be halving the distance between
pn and qn again because of similar triangles. This means that

|pn − qn| =
ε0
2n

We can bound ε0
2n by all ε > 0 by selecting a large enough n, which shows that

the two points will eventually converge to the same point. Alternatively, here
is the proof given by Arun:

For each step of the game, the points p0 and q0 move half way towards the
vertex v0. Such that p1 = p0+v0

2 and pn = pn−1+v
2 and qi work analogously.

Then let’s look at

|pn − qn| =
∣∣∣∣pn−1 + v

2
− qn−1 + v

2

∣∣∣∣ = ∣∣∣∣qn−1 + pn−1

2

∣∣∣∣
Since we also have a way of defining each qn−1 and pn−1 we can unroll this
recursive sequence. We notice that each time everything cancels out except for
the next term in the sequence and an additional factor of 1

2 . Therefore this
shows us that the distance must be ε0

2n .

3.3 Statement 3

I’ve spent a decent amount of time trying to understand the proof laid out by
Arun. While I understand bits and pieces of it, I don’t think I would have a
good time trying to explain it myself or summarizing it in my own words. For
this reason I will just refer you to his website for the proof of this statement.

It is interesting to note that this proof is not specific to equilateral triangles
and it is applicable to just triangles in general. This means that you can start
off with any 3 points on a plane and applying the Chaos game to it, you will
end up with a triangular gasket.

7

4 Other Fractals

I mentioned in an earlier section that you can mess around with the number of
points, the scale factor, or the rules in which you pick vertices. I will quickly
talk about which interesting cases there are, but I won’t be diving into the math
in a similar way that I did for the basic Chaos game.

4.1 4 Vertices

The first thing you might be wondering is what happens if we increase the
amount of vertices. Applying the game to 4, we notice that nothing comes out
of it. It approximately just fills in the square/rectangle itself.

This doesn’t mean that you can’t generate fractals with 4 vertices. If you add
an additional rule where the current vertex that you selected can’t be used for
the next iteration, you end up with the following fractal:

You can even play with this rule set. If the current vertex cannot be one place
away from the previous vertex, then we will achieve this fractal:

8

There are a lot more rules and things you can accomplish. I recommend looking
at the wiki if you want to see more. All the examples and photos that I am
providing are pulled from there.

4.2 More Cool Shit

I just wanted to share this one because it was super cool. If you have 5 points
in a regular pentagon, then changing the scale factor to be 1

φ will give you the
following fractal:

9

https://en.wikipedia.org/wiki/Chaos_game

	Introduction
	Code
	Understanding the game
	Statement 1
	Statement 2
	Statement 3

	Other Fractals
	4 Vertices
	More Cool Shit

