
PROJECT REPORT FOR REU 2024: NETWORK REGRESSION...

QI KUANG, YI WEI, DAVID JIANG, AND HANBAEK LYU

Abstract. We present a novel approach to network regression by introducing the Supervised

Network Dictionary Learning (SNDL) model. This model leverages k-path sampling and Su-
pervised Matrix Factorization (SMF) to extract mesoscale structural patterns, achieving both
high predictive accuracy and interpretability. By employing Block Coordinate Descent (BCD)

algorithms, the SNDL model efficiently handles large-scale network data, making it a robust
tool for both prediction and network affinity tasks. We validate the SNDL model with empirical
experiments on datasets such as Facebook100 and BioGRID, demonstrating its applicability to
both social and biological networks.

Contents

1. Introduction 2
1.1. Our Contributions 2
2. Related Works 2
2.1. Network Regression 2
2.2. Metrics for Similarity between Networks 3
2.3. Network Alignment for Biological Networks 3
2.4. Supervised Matrix Factorization 4
3. Preliminaries 5
4. Statement of the problem 6
5. Methods 6
5.1. SMF and BCD Algorithm 6
5.2. Supervised Network Dictionary Learning 8
6. Random network models 10
6.1. Erdös-Rényi 10
6.2. Barabási–Albert 11
6.3. Watts–Strogatz 12
6.4. Configuration Model 12
7. Experiments 13
7.1. Facebook100 13
7.2. Biological PPI Network 17
8. Conclusion and Future Works 21
9. Reconstruction error bounds 21
9.1. Notations 22
9.2. Assumptions 23
9.3. Theorems 23
References 28

1

2 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

1. Introduction

Regression is a fundamental technique in machine learning, widely used to model and analyze
the relationship between a dependent variable and one or more independent variables. By fitting
a model to observed data, regression allows for the prediction of continuous outcomes, making
it essential in a variety of applications, from financial forecasting to medical diagnosis [Hastie
et al., 2009]. Beyond its predictive power, regression models, particularly linear regression, are
highly valued for their interpretability. The coefficients of these models provide direct insights
into the influence of each predictor, allowing practitioners to better understand the underlying
patterns in the data. This interpretability is crucial for validating models, ensuring transparency,
and supporting decision-making in fields where the rationale behind predictions is just as important
as the predictions themselves [Murdoch et al., 2019].

However, extending regression models to discrete data, such as networks, presents significant
challenges. Network data differs fundamentally from continuous data due to its complex structure
and inherent dependencies. Unlike traditional regression models, which assume independence
between observations, network data is defined by nodes connected through edges, introducing
intricate dependencies that traditional models are not designed to handle [Newman, 2018]. Moreover,
network data often exhibits high dimensionality and sparsity, with interactions between nodes that
cannot be easily captured by linear models [Kolaczyk and Csárdi, 2014]. This complexity also
hampers interpretability, as regression coefficients may lose their intuitive meaning in the context
of networks [Goldenberg et al., 2009].

Motivated by these challenges, we address the following core question in this paper:

Given a collection of networks {Gi}di=1 with labels {yi}di=1, can we perform regression between the
independent network data and the dependent label data? If so, how can we associate the obtained

coefficients with predictors to achieve interpretability?

1.1. Our Contributions. In this paper, we propose an interpretable Supervised Network Dictio-
nary Learning (SNDL) model for network regression. The model is designed to handle network data
and label data, offering both high prediction accuracy and good interpretability. Our approach
assumes that the mesoscale structure of the networks — the space of all k-node subgraphs — is
low-dimensional, meaning that it can be efficiently captured and summarized. To achieve this, we
use a k-path sampling algorithm [Lyu et al., 2023] to sample mesoscale structures, and employ
Supervised Matrix Factorization (SMF) and the Block Coordinate Descent (BCD) algorithm [Lyu
et al., 2024] to extract representative patterns (or dictionary) and their corresponding regression
coefficients.

The key contributions of our work include:

• We propose an interpretable framework, SNDL, for network regression that achieves
high prediction accuracy compared to baseline predictors. The model leverages k-path
sampling and supervised matrix factorization techniques to explore the mesoscale structure
of networks.

• We validate our model through empirical experiments on the Facebook100 dataset [Rossi
and Ahmed, 2015] and BioGRID dataset [Rossi and Ahmed, 2015]. For the Facebook100
dataset, we conduct additional experiments with randomly generated networks as baseline
networks and real networks as test cases.

2. Related Works

2.1. Network Regression.
Network regression extends traditional regression models to network-structured data, where

though dependencies between nodes violate the independence assumption. Early work, such as
by Krackhardt [Krackhardt, 1988], incorporated network attributes like centrality as covariates in
regression models, acknowledging the role of network position on node outcomes. More advanced

3

models, like stochastic actor-oriented models (SAOMs), integrate both node-level attributes and
network structure to capture dynamic relationships [Snijders et al., 2006].

Bayesian methods, such as those by Hoff [Hoff, 2008], address uncertainty in network structure by
using hierarchical models, which have been effective in sparse networks. Non-parametric approaches,
such as Li et al. [Li et al., 2019], allow for flexibility by capturing both global and local relationships
in network data without strong parametric assumptions. These models are valuable for complex
networks where traditional approaches fall short.

Network Generalized Linear Models (NGLMs) extend generalized linear models to network data,
incorporating terms that account for node connectivity [Park and Newman, 2004]. These models
have been applied to problems like disease spread in epidemiology and behavior analysis in social
networks.

However, the interpretability of the models above is still not totally clear like regression to
continuous data. And they don’t provide insights of the networks’ mesoscale structure. Furthermore,
most of them are not computationally efficient given network data with large order.

2.2. Metrics for Similarity between Networks.
Accurate measurement of network similarity is essential for applications ranging from anomaly

detection to transfer learning. This section will focus on various methodologies for assessing network
similarity, highlighting specific comparison methods from recent studies.

Tantardini et al. (2019) explore quantitative methods that extend beyond traditional unweighted
and undirected network comparisons to include directed and/or weighted networks. Their work
emphasizes methods capable of handling richer information typically found in complex real-world
networks, such as the European Air Transportation Network and the FAO Trade Network. Notably,
they discuss DeltaCon, a method that utilizes node correspondences to assess network similari-
ties through a root-node adjacency matrix, and NetSimile, which does not require known node-
correspondence and uses statistical summaries of node features to determine similarity[Tantardini
et al., 2019]. Grannis (2017) addresses the statistical challenges in network data, focusing on
the biases introduced by non-independence of observations. The paper emphasizes the use of
model-based approaches to counteract these sampling issues, though specific statistical models
are not detailed, the discussion centers on the need for robust statistical methods that account
for network data dependencies [Grannis, 2018]. Soundarajan et al. (2014) provide an empirical
evaluation of twenty network similarity methods, categorizing them based on their operational
complexity and requirement for node correspondence. They highlight two specific methods: Random
Walk with Restarts (RWR), which measures similarity based on a restart probability at each node
during random walks, and NetSimile, which employs a canonical correlation analysis on node-level
features to determine network similarity. Their findings suggest that even complex methods can
often be closely approximated by simpler methods like those comparing basic network features such
as density or degree distributions [Soundarajan et al., 2014]. Wills and Meyer (2020) introduce
practical metrics for graph comparison with a focus on practitioner-oriented applications. They
discuss vector-based similarity methods, such as spectral distances that compare networks based
on the eigenvalues of their Laplacian matrices, and matching-based approaches like the Graphlet
Correlation Distance, which compares the frequencies of small subgraphs (graphlets) between
networks. These methods are illustrated through their implementation in the NetComp software,
which is designed to facilitate the application of various graph comparison metrics [Wills and Meyer,
2020].

These studies collectively enhance our understanding of network similarity assessment, providing
a range of methods suited to different types of network data and analysis needs. The ongoing
development and evaluation of these methods reflect the dynamic nature of network analysis
research and its applications across diverse fields.

2.3. Network Alignment for Biological Networks.

4 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

Studying and comparing the structural representations in the form of complex networks has been
a very fruitful and fascinating research area[Emmert-Streib et al., 2016]. To date, many techniques
have been developed to compare real-world graph patterns structurally; concrete examples thereof
are methods applied in linguistics[Dehmer and Emmert-Streib, 2011], web mining[Dehmer, 2007],
chemoinformatics[Willett, 1987], and computational biology[Emmert-Streib and Dehmer, 2011].

Biological network alignment has transitioned significantly from focusing on simple pathway-
based alignments to incorporating complex, integrative approaches that utilize a wide range of
biological data. Early efforts, such as those introduced by PathBLAST, primarily aligned pathways
based on sequence similarity and orthologous relationships [Kelley et al., 2003]. These foundational
methods evolved through innovations like NetworkBLAST, which integrated interaction data for
more sophisticated network mapping [Sharan et al., 2005]. Subsequent developments introduced
global alignment strategies, exemplified by IsoRank and its successors, which applied PageRank-like
algorithms to consider both protein sequence and topology simultaneously, leading to more robust
many-to-many mappings [Singh et al., 2008, Liao et al., 2009].

Graphlet-based methods, starting with GRAAL and its extensions, marked a further evolution
by using local topological features to inform alignments, enhancing accuracy through algorithms
like the Hungarian method and incorporating multiple similarity metrics [Kuchaiev et al., 2010].
The latest advancements in the field have been driven by data-driven approaches such as TARA
and TARA++, which integrate topological, sequence, and functional information. TARA++, in
particular, has demonstrated superior performance over traditional methods by employing machine
learning techniques to directly learn from network and protein data, thereby improving precision
and functional prediction capabilities [Gu and Milenković, 2021].

Overall, the progression from simple pathway comparisons to sophisticated, data-driven frame-
works in network alignment reflects significant advances in our ability to decipher functional
conservation across species. Modern NA methods like TARA++ set new benchmarks for accuracy
and efficiency, pushing the boundaries of comparative biology and offering enhanced insights into
the evolutionary and functional relationships inherent in biological networks [Gu and Milenković,
2021]. These integrative approaches, leveraging diverse datasets and computational innovations,
continue to transform the landscape of network alignment, highlighting the dynamic interplay
between computational techniques and biological insights.

2.4. Supervised Matrix Factorization.
Supervised Matrix Factorization (SMF) is a variant of matrix factorization that incorporates

supervision in the learning process by leveraging both feature and label information. It extends
traditional matrix factorization, which decomposes a data matrix into low-rank latent factors, by
utilizing the target labels to guide the factorization. SMF is widely used in machine learning tasks
such as collaborative filtering, document modeling, and image analysis, where not only the data
but also some form of supervision (e.g., class labels or ratings) is available to improve predictive
performance [Mairal et al., 2008, Lee and Seung, 2001]. Unlike traditional unsupervised matrix
factorization, SMF aims to optimize a supervised loss function that captures both the reconstruction
error and the predictive power of the learned factors [Kim et al., 2016, Ritchie et al., 2020].

Lee et al. [2023a] introduced a novel method to reformulate SMF problems as low-rank matrix
estimation by applying a ”double-lifting” technique in the parameter space. This reformulation
allowed them to show that low-rank projected gradient descent (LPGD) could find a global
optimum at an exponential rate when the problem is well-conditioned. However, their approach
faces limitations, particularly when constraints like nonnegativity need to be imposed on the factor
matrices. Singular value decomposition (SVD), which is commonly used in such matrix factorization
tasks, does not guarantee optimal nonnegative matrix decompositions, which are often required in
practical applications like image processing and collaborative filtering [Cai et al., 2010].

To overcome this limitation, recent research has shifted toward analyzing the local (constrained)
landscape of SMF, focusing on the robustness of local optima under L2-regularization. Block

5

coordinate descent (BCD) algorithms have been extensively applied to SMF problems due to their
ability to optimize convex objectives with respect to each block of variables while keeping the others
fixed. This iterative strategy improves solutions step by step [Wright, 2015, Mairal et al., 2008,
Austin et al., 2018, Leuschner et al., 2019]. Nevertheless, theoretical guarantees for these methods
are limited, with most studies ensuring only asymptotic convergence to stationary points [Grippo
and Sciandrone, 2000, Xu and Yin, 2013], leaving a gap in understanding convergence rates and
global optimality.

Lee et al. [2024a] makes significant contributions for this problem by performing an in-depth
analysis of the local landscape of SMF, including a detailed calculation of the block structure
of the Hessian matrix, and identifies the minimum L2-regularization required to ensure local
strong convexity. The authors propose a BCD algorithm with global convergence guarantees and
demonstrate that it achieves ϵ-stationary points within a known iteration complexity, enhancing
earlier works on constrained matrix factorization [Burer and Monteiro, 2003]. Additionally, the
authors introduce a neural network-based implementation of the BCD algorithm, optimized for
GPU acceleration, and validate their theoretical results with numerical experiments. And our SNDL
model utilizes this algorithm and solve a well-modeled SMF problem to do network regression.

3. Preliminaries

We use Rp to represent the ambient space for data, equipped with standard inner product ⟨·, ·⟩,
inducing the Euclidean norm ∥ · ∥. We refer to the set {0, 1, . . . , κ} as the space of class labels,
containing κ+1 classes. For a convex subset Θ in an Euclidean space, we denote ΠΘ the projection
operator onto Θ.

For a matrix A = (aij) ∈ Rm×n, the expressions A[i, :] and A[:, j] refer to the ith row and the
jth column of A for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, respectively. For each integer n ≥ 1, In denotes
the n× n identity matrix. We denote its Frobenius, (2-), and supremum norm by

∥A∥2F :=
∑
i,j

a2ij , ∥A∥2 := sup
x∈Rn,∥x∥=1

∥Ax∥, ∥A∥∞ := max
i,j
|aij |,

respectively. For square symmetric matrices A,B ∈ Rn×n, A ⪯ B indicates that vTAv ≤ vTBv
holds for all unit vectors v ∈ Rn. If 0 < α− < α+, then we write A ≃ α±B to denote α−B ⪯
A ⪯ α+B. The horizontal concatenation of two matrices A and B is denoted by [A,B] when their
dimensions match.

A network is a G = (V,A) with node set V and weighted adjacency matrix A : V 2 → R≥0. We
say G is a graph if A is symmetric and binary. Two nodes u, v are adjacent if A[u, v] > 0 and in this
case u is a neighbor of v and vice versa. When u, v ∈ G are adjacent, an edge in G between u, v ∈ G
is a pair (u, v). We say the network G is connected if for every pair of nodes, there is a sequence of
adjacent nodes leading from one to the other. A k-walk in G is a sequence of k (allowing repetition)
adjacent nodes x : [k]→ V,A[x(i),x(i+ 1)] > 0 for i = 1, . . . , k − 1 (denoting [k] := {1, 2, . . . , k}).
A k-walk is a k-path if all nodes are distinct. Another network H = (V ′, A′) is a subnetwork of
G = (V,A) if V ′ ⊆ V and A′[u, v] ≤ A[u, v] for all u, v ∈ V ′. Such H is a k-node sub-network if
|V ′| = k. Given a k-path x in G, denote by Ax the k × k matrix where Ax[i, j] = A[x(i),x(j)] for
1 ≤ i, j ≤ k.

We say a network has d1-dimensional node feature if for every node i ∈ V , there is a vector
zi ∈ Rd1 attached to i. Then for a network G with n1 nodes and d1-dimensional node feature,
there is a node feature matrix Z ∈ Rn1×d1 for network G. Similarly, we say that a network has
d2-dimensional edge feature if for every edge e ∈ G, there is a vector le ∈ Rd2 attached to e. Then
for a network G with n2 nodes and d2-dimensional edge feature, there is an edge feature matrix
L ∈ Rn2×d2 for network G.

6 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

4. Statement of the problem

Problem 4.1. Given k ∈ N, a collection of baseline networks {Gi}di=1 (potentially with node/edge
feature), in which every network has a label yi ∈ {1, . . . , κ}, and a test network G, encode G as a
single probability distribution vector p = (p1, . . . , pκ), where pi means the predictive probability that
a random k-node subgraph in G is from a baseline network with label i.

Remark. Here if κ = d, which means every network has a distinct label, the problem is to find
affinity score between the test network G and every network in the baseline networks.

5. Methods

5.1. SMF and BCD Algorithm.
In this section, we give a mathematical formulation of the Supervised Matrix Factorization

(SMF) problem, and the explanation of BCD algorithm in [Lee et al., 2024b] to solve SMF.
Given a set of n samples (yi,xi) for i = 1, 2, . . . , n where yi ∈ {0, 1, . . . , κ} represents the observed

label, and xi ∈ Rp denotes high-dimensional feature. Our task is that given any feature x, we want
to predict its corresponding label y.

In SMF, firstly we utilize a suitable r ≪ p to compress the sampled dataset’s features into a
matrix W = [w1, . . . ,wr] ∈ Rp×r, which we call it the dictionary with respect to the sampled
feature matrix X = [x1, . . . ,xn] ∈ Rp×n, using a suitable code matrix H = [h1, . . . ,hn] ∈ Rr×n.
This can be compactly expressed as an optimization problem:

min
W∈C1,H∈C2

∥X−WH∥2F

Here Cj for j = 1, 2 represent convex constraint sets of W and H.
Then we add components of supervised learning into the matrix factorization problem above.

Here we present our probabilistic modeling assumption. Given W ∈ Rp×r,hi ∈ Rr and β ∈ Rκ×r,
suppose yi is a realization of a random variable of sample i whose conditional distribution is defined
as:

P(yi = 0|xi) =
1

1 +
∑κ

c=1 exp(ai,c)
(1)

P(yi = l|xi) =
exp(ai,l)

1 +
∑κ

c=1 exp(ai,c)
∀ l = 1, . . . , κ

where ai ∈ Rκ is the activation for yi. The activation is defined in two ways corresponding to
feature-based model (SMF-H) and filter-based model(SMF-W):

ai =

{
β⊤hi for SMF-H

β⊤W⊤xi for SMF-W
(2)

Here, β is the logistic regression coefficient associated with input features hi or W
⊤xi, respectively.

In equation (2), the code hi or the ’filtered feature’ W⊤xi is the low-dimensional representation of
xi. Notable differences between SMF-H and SMF-W arise when predicting the unknown label of a
test point [Lee et al., 2023b].

Let Z := (W,H,β) be our block parameters of interest. In order to estimate Z from observed
data (xi, yi) for i = 1, . . . , n, we combine two parts above and consider the following multi-objective
non-convex constrained optimization problem:

min
W∈C1,H∈C2,β∈C3

f(Z) := ξ∥X−WH∥2F +

n∑
i=1

ℓ(yi,ai)(3)

7

Algorithm 1 BCD algorithm for SMF-W

1: Input: X ∈ Rp×n (Data); Ylabel ∈ {0, . . . , κ}1×n (Label)
2: Constraints: Convex subsets C1 ⊆ Rp×r, C2 ⊆ Rr×n, C3 ⊆ Rr×κ

3: Parameters: ξ ≥ 0 (Tuning parameter); T ∈ N (number of iterations); (ηk;i)k≥1,1≤i≤4 (step-
sizes)

4: Initialize W ∈ C1, H ∈ C2, β ∈ C3
5: for k = 1, 2, . . . , T do
6: (Update W)
7: Update activation a1, . . . , an and K
8: ∇Wf(Z)← XK⊤β⊤ + 2ξ(WH−X)H⊤

9: Choose η−1
k,1 > L1 := α+∥β∥22 · ∥X∥22 + 2ξ∥H∥22

10: W← ΠC1
(W − ηk;1∇Wf(Z))

11: (Update H)
12: ∇Hf(Z)← 2ξW⊤(WH−X)
13: Choose η−1

k,2 > L2 := 2ξ∥W∥22
14: H← ΠC2

(H− ηk;2∇Hf(Z))
15: (Update β)
16: Update activation a1, . . . , an and K
17: ∇βf(Z)←W⊤XK⊤

18: Choose η−1
k,3 > L3 := α+∥W∥22 · ∥X∥22

19: β ← ΠC3(β − ηk;3∇βf(Z))
20: Output: Z = (W,H,β)

where

ℓ(yi,ai) := log(1 +

κ∑
c=1

exp(ai,c))−
κ∑

c=1

1{y=c}ai,c

Here Cj for j = 1, 2, 3 represent convex constraint sets of each block parameter, X = [x1, . . . ,xn] ∈
Rp×n, ai is as in (2), and the last term in (3) is the classification loss defined as the negative
log-likelihood. Note that the four block parameters are individually assumed to be constrained
in (3). A tuning parameter ξ controls the trade-off between the dual objectives of classification and
matrix factorization. The stated problem is inherently non-convex, involving three block parameters
that may come with additional constraints such as bounded norm. This formulation encompasses
several classical models as special cases. Specifically, when ξ ≫ 1, it transforms into the classical
matrix factorization with constraints [Lee and Seung, 2000][Lee and Seung, 1999].

To solve (3), we use the Block Coordinate Descent(BCD) algorithm in [Lee et al., 2024b]. We out-
line this algorithm for SMF-W in Algorithm 1 and for SMF-H in Algorithm 2. Our algorithm, out-
lined in Algorithm 1 and Algorithm 2, iteratively uses Block Coordinate Descent (BCD) on the three
blocks with an adaptively chosen stepsize. Here we denote K := [∇aℓ(y1,a1), . . . ,∇aℓ(yn,an)] ∈
Rκ×n where(

∇aℓ(yi,ai)
)
j
=

exp(ai,j)

1 +
∑κ

c=1 exp(ai,c)
− 1{yi = j} ∀ i ∈ {1, 2, . . . , n}, j ∈ {1, . . . , κ}

And let observed information Ḧ(y,a) := ∇a∇a⊤ℓ(y,a) for y and a. Then, let M > 0 be the
constant for the bounded activation, then α− and α+ are defined as follows:

α− := inf
∥a∥≤M

min
1≤s≤n

λmin(Ḧ(ys, a))

α+ := sup
∥a∥≤M

max
1≤s≤n

λmax(Ḧ(ys, a))

8 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

Algorithm 2 BCD algorithm for SMF-H

1: Input: X ∈ Rp×n (Data);Ylabel ∈ {0, . . . , κ}1×n (Label);
2: Constraints: Convex subsets C1 ⊆ Rp×r, C2 ⊆ Rr×n, C3 ⊆ Rr×κ

3: Parameters: ξ ≥ 0 (Tuning parameter); T ∈ N (number of iterations); (ηk;i)k≥1,1≤i≤4 (step-
sizes)

4: Initialize W ∈ C1, H ∈ C2, β ∈ C3
5: for k = 1, 2, . . . , T do
6: (Update W)
7: ∇Wf(Z)← 2ξ(WH−X)H⊤

8: Choose η−1
k,1 > L1 := 2ξ∥H∥22

9: W← ΠC1
(W − ηk;1∇Wf(Z))

10: (Update H)
11: Update activation a1, . . . , an, and K
12: ∇Hf(Z)← βK+ 2ξW⊤(WH−X)
13: Choose η−1

k,2 > L2 := α+∥β∥22 + 2ξ∥W∥22
14: H← ΠC2

(H− ηk;2∇Hf(Z))
15: (Update β)
16: Update activation a1, . . . , an, and K
17: ∇βf(Z)← XK⊤

18: Choose η−1
k,3 > L3 := α+∥H∥22

19: H← ΠC3(H− ηk;3∇βf(Z))
20: Output: Z = (W,H,β)

For theoretical guarantee of BCD, we need the following assumptions:

Assumption 5.1. (Constraint sets) The constraint sets C1, C2, C3 in (3) are closed, convex, and
compact.

Assumption 5.2. (Bounded activation) The activation a ∈ Rκ defined in (2) assumes bounded
norm, i.e., ∥a∥ ≤M for some constant M ∈ (0,∞).

And for each ϵ ≥ 0, we define θ⋆ ∈ Θ to be an ϵ-stationary point of f over Θ if

Gap(θ⋆) := sup
θ∈Θ,∥θ−θ⋆∥≤1

⟨−∇f(θ⋆), θ − θ⋆⟩ ≤ ϵ. (14)

Then in [Lee et al., 2024b], we get convergence guarantee of BCD in the following theorem:

Theorem 5.1. Suppose Assumptions 5.1 and 5.2 hold. Let Θ = C1 × C2 × C3, Zt = (Wt,Ht,βt),
t ≥ 1 denote the sequence of estimated parameters from Algorithm 1 or 2. Then for every initial
estimate Z0 and choice of parameters ξ, the followings hold:

(i) min1≤t≤T Gap(Zt) = O(T−1/2 log T).
(ii) For each ϵ > 0, an ϵ-stationary point is achieved within iteration O(ϵ−1 log ϵ−1).
(iii) Further assume that the step sizes ηk,i are uniformly upper bounded. Then Zt converges to

the set of stationary points of f over Θ.

5.2. Supervised Network Dictionary Learning.
In this section, we propose our Supervised Network Dictionary Learning model (SNDL) for

network regression problem based on filter-based Supervised Matrix Factorization (SMF-W) model.

5.2.1. Learning the latent motifs.
In this subsection, we give a mathematical explanation about how to learn latent motifs and

corresponding coefficients in our SNDL model. Given a collection of networks {Gi}di=1 with labels
{yi}di=1 ⊆ {0, . . . , κ} (potentially with node/edge feature), our task is to compress the mesoscale

9

information of the collection of networks (mesoscale subgraphs) and be able to utilize the compressed
information of networks to predict the labels of networks. The general process is:

(1) For each network Gi in the collection, we sample suitable number ni of subgraphs of it and
get corresponding adjacency matrices. Let n =

∑n
i=1 ni. Then we vectorize every adjacency

matrix and horizontally concatenate them to get feature matrix X ∈ Rk2×n. And for every
sample, we get its corresponding label from the network where the sample is generated.
Then we combine them to get the label vector Y ∈ Rn.

(2) Use BCD for SMF-W Algorithm 1 with input X and Y to get the output Z = (W,H,β),
where W is the dictionary of {Gi}di=1, a.k.a. latent motifs of {Gi}di=1.

In detail, we choose suitable k (number of nodes for subgraphs), r (number of subgraphs in the
dictionary), and ni for i = 1, . . . , d (number of samples from Gi). For sampling method, we use the
Pivot Chain sampling algorithm with k-path embedding in [Lyu et al., 2023]. There are two main
advantages of the algorithm:

(1) The sampled subgraphs are connected, which is convenient for identifying patterns of
networks.

(2) The algorithm will output a k-path embedding for the sampled subgraph defining a unique
order of nodes in the sampled subgraph, which is useful for constructing the unique adjacency
matrix and SNDL for networks with node/edge feature.

And we have the convergence guarantee and convergence rate of Pivot Chain sampling method
below. See [Lyu et al., 2023] for more details.

Theorem 5.2 (Convergence of pivot chain). Let G = ([n], A, α) be an irreducible network with
A(i, j) > 0 for some j ∈ [n] for each i ∈ [n]. Let F = ([k], AF) be a rooted tree motif. Then pivot
chain F → G is irreducible with unique stationary distribution πF→G.

Theorem 5.3 (Mixing time of pivot chain). Let F = ([k], EF) be a directed rooted tree and
G = ([n], A, α) be an irreducible network. Further assume that for each i ∈ [n], A(i, j) > 0 for some
j ∈ [n]. Let P denote the transition kernel of the random walk on G defined at (21). Then the
mixing time tmix(ϵ) of the pivot chain (xt)t≥0 of homomorphisms F → G satisfies the following.

(i) Let t
(1)
mix(ϵ) be the mixing time of the pivot with kernel P . Then

tmix(ϵ) = t
(1)
mix(ϵ).

(ii) Let λ⋆ be the eigenvalue of P with largest modulus that is less than 1. Then

λ⋆ log(1/2ϵ)

1− λ⋆
≤ tmix(ϵ) ≤

maxx∈[n] log(1/α(x)ϵ)

1− λ⋆
.

(iii) Suppose n ≥ 13, A is the adjacency matrix of some simple graph, and α(i) ∝ deg(i) for
each i ∈ [n]. Then

tmix(ϵ) ≤ log2(ϵ
−1)

(
4

27
n3 +

4

3
n2 +

2

9
n− 296

27

)
.

After sampling subgraphs from {Gi}i, we obtain ajacency matrices {Ai,j}ni
j=1 ⊆ Rk×k of sub-

graphs for each Gi, i = 1, . . . , d. Suppose for any i, j, Ai,j = [A(i,j),1, . . . , A(i,j),k]
⊤, where A(i,j),c =

A[c, :] for c = 1, . . . , k. We define vectorized adjacency matrices aadj
i,j = [A⊤

(i,j),1, . . . , A
⊤
(i,j),k]

⊤ ∈ Rk2

for i = 1, . . . , d; j = 1, . . . , ni.
If {Gi}i have d1-dimensional node feature, for j-th sampled subgraph from Gi, i = 1, . . . , d, j =

1, . . . , ni, we obtain the corresponding node feature matrix Xnode
i,j ∈ Rk×d1 with node order from

the sampled k-path. Then we vectorize every Xnode
i,j in the same way above to get the corresponding

vectorized node feature vector xnode
i,j ∈ Rkd1 . Similarly, if {Gi}i have d2-dimensional edge feature, for

j-th sampled subgraph from Gi, i = 1, . . . , d, j = 1, . . . , ni, we obtain the corresponding edge feature

10 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

tensor Xedge
i,j ∈ Rk×k×d2 with edge order same as Ai,j . Then we vectorize every Xedge

i,j ∈ Rk×k×d2

in the same way above to get the corresponding vectorized edge feature vector xedge
i,j ∈ Rk2d2 .

Then for any i = 1, . . . , d, j = 1, . . . , ni, we concatenate the vectorized adjacency matrices ai,j ,

node feature vector xnode
i,j (if {Gi}i have), and edge feature vector xedge

i,j (if {Gi}i have) to get the

feature vector xi,j = [aadj
i,j

⊤
, xnode

i,j
⊤
, xedge

i,j

⊤
]⊤ for the j-th sample of network Gi. Eventually, we

get the feature matrix X = [x1,1, . . . ,x1,n1
, . . . ,xd,1, . . . ,xd,nd

] for {Gi}i. Furthermore, we get the
label vector Y = [y1, . . . , y1︸ ︷︷ ︸

n1 terms

, . . . , yj , . . . , yj︸ ︷︷ ︸
nj terms

, . . . , yd, . . . , yd︸ ︷︷ ︸
nd terms

].

Having obtained the feature matrix X and the label vector Y, we utilize Algorithm 1 with
input X, Y, and hyperparameter r to get the output Z = (W,H,β), where W = [w1, . . . ,wr] ∈
Rr×(k2+kd1+k2d2) is the dictionary, i.e, latent motifs of {Gi}i with respect to subgraph size k. And
β = [β1, . . . ,βr]

⊤ ∈ Rr×κ is the multinomial logistic regression coefficients with input features
W⊤X.

Remark. In our SNDL model, we implicitly assume that the feature space of all k-subgraphs
from {Gi}i is low-dimensional. In other words, there exists r ≪ n and W = [w1, . . . ,wr] ∈
Rr×(k2+kd1+k2d2) such that for every feature vector x ∈ Rk2+kd1+k2d2 from some Gj , j ∈ {1, . . . , d},
x ∈ lin{w1, . . . ,wr}, where lin(·) means the linear space spanned by the vectors in the parenthesis.

5.2.2. Network Affinity Prediction.
In this subsection, we explain the methodology of SNDL to solve Problem 4.1 continuing

section 5.1 and subsection 5.2.1. The assumptions and initial data are the same as subsection 5.2.1.
After dealing with the given data using the SNDL model described in subsection 5.2.1, we

obtain the output Z = (W,H,β). Now given a test network G, we choose a suitable n (number

of samples from G) and construct a feature matrix X = [x1, . . . ,xn] ∈ R(k2+kd1+k2d2)×n in the
same way described in subsection 5.2.1. Then by our probabilistic modeling assumption (1)
and SMF-W model (2), for i = 1, . . . , n, we get activations ai = β⊤W⊤xi, and a probability
distribution pi = [1

1+
∑κ

c=1 exp(ai,c)
],

ai,1

1+
∑κ

c=1 exp(ai,c)
, . . . ,

ai,κ

1+
∑κ

c=1 exp(ai,c)
], where the j-th entry of pi

is the predictive probability that the i-th k-node subgraph sample in G is from a baseline network

with label j. Then we average all pi, i.e., we define p =
∑n

i=1 pi

n , which is our solution of SNDL to
Problem 4.1.

Remark. Suppose W = [w1, . . . ,wr], β = [β1, . . . ,βr]
⊤. Notice that for each wi ∈ Rk2+kd1+k2d2 ,

i = 1, . . . , r, (a representative subgraph in the dictionary), there is a corresponding βi ∈ Rκ serving
as the impact factor of this representative subgraph for the predictive probability distribution,
which is useful to interpret what label the representative subgraph has and what mesoscale pattern
the test network G has to be characterized with some specific label.

6. Random network models

Before we continue talking about our experiments and applications, it is important to talk about
these random graphs and how we set our parameters for them. Given graph 1 = g1, which is the
real world graph that we are looking at, we want to tune graph 2 = g2, the random graph, such
that they are roughly equivalent in density and equivalent in number of nodes.

6.1. Erdös-Rényi. Erdös-Rényi (ER) consists of 2 parameters: number of nodes (n), and edge
probability (p). In order to generate an ER graph we will place n nodes all unconnected. Then
between each pair of nodes we will draw an edge at probability p.

We will let n = g1(n), and then in order to approximate the density, we just need to set p
to be equal to g1(ρ).

11

This results in graphs in which edges are assumed to be independent and appear at equal probability.
This is a stark contrast from real world graphs where edges influence other edges, and edges do
not appear at equal probability. For this reason we should expect ER graphs to be very polarizing
when comparing to social networks.

6.2. Barabási–Albert. Real world networks are often scale-free which means that the degree
distribution of the nodes follow a power law. A downfall of ER is that they do not produce scale-free
networks. In order to do so we can use preferential attachment, which Barabási–Albert (BA) takes
advantage of.

BA consists of 2 parameters as well: number of nodes (n), and number of edges to attach
from a new node to existing nodes (m). In order to generate a BA graph we will place m0 where
m0 > m nodes all unconnected. Then we will add a new node that is also unconnected. Then we
will draw m links to our existing nodes i by probability:

pi =
ki∑
j kj

where ki is the degree of node i. This can be thought of as the probability being proportional to
the node’s degree.

We will let n be equivalent to g1(n). Then in order to match density, we want to know the
number of edges that we will have. Let g1(ρ) be the density of g1. This means that g1(ρ) =

n
e ,

since each time we add a node we are adding m new edges. This means we have m many edges
added n−m0 times. Let’s let m0 = m+ 1, this means we are adding m(n−m+ 1) edges total.
Meaning that we want the following to be true:

e = m(n−m+ 1)

e ≈ m(n−m)

We note that we can make such an approximation since we are working with n with a magnitude
of 104 >. Using the density of an undirected simple graph we get that:

g1(ρ) ≈
2e

n(n− 1)

g1(ρ) ≈
2m(n−m)

n(n− 1)

g1(ρ)(n(n− 1)) ≈ 2m(n−m)

g1(ρ)(n(n− 1))

2n
+

m2

n
≈ m

g1(ρ)(n− 1)

2
≈ m

We can again make an assumption that g1(ρ)(n−1)
2 ≫ m2

n . Through this calculation we get our two
parameters that approximate the density of the graph that we are trying to approximate using BA.

This method of graph generation results in a structure where earlier placed nodes have a much
higher degree, which can be thought of as akin to social networks. Earlier users are likely to have
more connections due to longer time with potential to make connections. This means we can expect
BA to better predict social networks.

12 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

6.3. Watts–Strogatz. The Watts-Strogatz model (WS) was designed to also counter some of
the downfalls of ER when looking at real world networks. WS solves some of the issues that BA
attempts to solve but with an easier method.

WS consists of 3 parameters: number of nodes (n), rewiring probability (p), and neighbors
that each node is joined to (k) . In order to generate a WS graph we start by constructing a graph
with n nodes each connected to k neighbors, k/2 on each side. That is if the nodes are labels
0, . . . , n− 1 , there is an edge (i, j) if and only if

0 < |i− j| (mod

(
n− 1− K

2

)
) ≤ K

2

Then for every node i = 0, . . . , n− 1we take every edge connecting i to its k/2 rightmost neighbors,
that is every edge (i, j) such that

0 < (j − i) (mod n) ≤ k

2

And we rewire it with probability p. Where it is rewired by replacing (i, j) with (i, ℓ) where ℓ
is chosen uniformly at random from all possible nodes while avoiding self-loops ℓ ̸= i and link
duplication.

We again will let n be equivalent to g1(n). We will arbitrarily let p = 0.5 since this parame-
ter is responsible for rewiring the graph and does not impact the density of the graph. The number
of edges in a WS graph can be approximate by:

e =
n ∗ k
2

Since each node is connected to k neighbors on one side of the ring, and then we must divide by 2
to avoid double counting. Then using the same edge density formula from earlier we have that:

g1(ρ) ≈
2e

n(n− 1)

g1(ρ) ≈
n ∗ k

n(n− 1)

g1(ρ) ≈
k

(n− 1)

(n− 1)g1(ρ) ≈ k

Through this calculation we get our parameters that approximate the density of the graph that we
are trying to approximate through WS.

Since we are starting with a lattice like structure, we expect a locally clustered network. The
rewiring is responsible to reduce the average path-length of the graph. More importantly it again
produces a scale-free network similar to BA, however, computationally WS is simpler.

6.4. Configuration Model. The last model we will use is the configuration model (CM). CM
is arguably the best in terms of approximately real world networks. This is because we are using
actual information of g1 in order to produce a CM graph.

The only parameter that a CM graph needs is a list of the degrees of each node. The way
the graph is by representing the degrees of the vertices as stubs. Then we choose two stubs
uniformly at random and connecting them to form an edge. Then we choose another pair from the
remaining 2m− 2 stubs where m is half the sum of our degree list. This is guaranteed to always be

13

an integer since a graph must have an even sum of degrees. We will continue this process until we
run out of stubs, and as a result we will get a network with a pre-defined degree sequence.

The only parameter we need is the degree list which can be found using python.

7. Experiments

7.1. Facebook100.
We study the Facebook social network of friendships at 100 American colleges and universities

at a single moment of time in September 2005[Rossi and Ahmed, 2015]. The network consist of 100
independent networks, where every network corresponds to one university. Friendships are recorded
only between people from the same university. Besides the information about friendships, network
also contains limited demographic information. The Network is unweighted and undirected.

7.1.1. Binary Network Regression.
As stated in 5.2, given baseline networks G1 and G2 and test network G, we would like to encode

G as a single probability distribution vector p = (p1, p2), where pi means the predictive probability
that a random k-node subgraph in G is from the baseline network Gi for i = 1, 2.

We developed a function that for each ordered network pair (G1, G2) in the ntwk list (n(n−1)
2

number of pairs for an n-length list), it will give the numeric predictive probability of each network
in the list that it is from the baseline network G2. For example, in the cell (4, 1) in Figure ??, it
means that there is 0.79 probability that MIT8 is from the network UCLA26 and 0.21(= 1− 0.79)
probability that it is from the network Caltech36.

From 1, we can oberserve that Caltech36 and UCLA26 can be very well distinguished from each
other, showing that the structures of them are quite different, which is corresponding to the fact.
However, it seems that it is more difficult to distinguish Harvard1, MIT8 and UCLA26 from each
other, indicating that there structures may be more similar and need further understanding.

7.1.2. Random Graph Testing. The main allure of using random graphs is this allows us to have a
lot of control over our experiment. When looking at two separate real world graphs there are various
factors that might cause the two graphs to either be similar or vastly different. When looking at
these well documented and studied random graphs we will be able to arrive to conclusions much
easier about our models.

One of the main goals we have is to look at how our accuracy changes as we vary both k and n.
We can do this by repeatedly using SMF BCD on various values of k and n and seeing how well they
can differentiate between our social graphs and our random graphs. We begin by observing how
our accuracy changes based on the hyperparameters and random graph we use. We will do this by
generating a heatmap of n components and k.

There are some differences between the Facebook networks that are apparent and should be
mentioned before we talk about observations when comparing with random graphs.

Caltech UCLA MIT Harvard
Nodes 769 20.5k 6.4k 15.1k
Edges 16.7k 747.7k 251.3k 824.6k
Density 0.056 0.003 0.012 0.007

As we see based on our values, Caltech is by far the smallest graph out of all the ones that we are
looking at. Additionally, Caltech is the densest by a decent margin as well. UCLA is the polar
opposite where is has the most noes and lowest density. This means that when looking at the data,
it is beneficial to look at comparing UCLA with Caltech since they can be thought of as polar
opposites.

14 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

Figure 1. Binary Network Regression - Facebook 100 (k = 50)

For Caltech, at k = 40 it appears that all of our synthetic models reach relatively high accuracy.
The random graph that does the worse is CM, which is what we expected given that CM most
closely aligns a graphs properties while retaining randomness within the graph.

Looking at UCLA’s graph we notice that WS falls significantly behind in terms of accuracy.
Additionally, we notice that for our trials WS also has the greatest standard deviation meaning
that even amongst our trials our regression wasn’t too sure about WS. We also notice that the
second derivative of WS is positive, this would suggest that perhaps at k = 50 we could see much
higher accuracy between UCLA and WS.

Looking at Harvard we notice again that WS is the lowest accuracy and ends at around 70%.
But comparatively to UCLA, we see that the second derivative of WS is much lower than UCLA.

There are some sparse examples in which while we vary n we notice an increase in accuracy, it
seems in general that while we vary n the accuracy stays relatively close. The physical interpretation
of why n componentsdoesn’t impact the accuracy that much would be that there are only a few
subgraph patterns between our social networks and our random networks that we need to learn.

Some of these trends can also be explained once we plot the latent motifs that SMF BCD is learning.
The graphs we will take a look at will be UCLA26 with ER and WS. This is because looking at
UCLA with WS we see that despite increasing k our accuracy doesn’t necessarily increase. What
we would expect from this fact would be that their subgraph structure looks very similar. In the
following graphs we have the subgraph that has the lowest and highest regression coefficient. In both
cases we see that the lowest coefficient subgraph is a path with some sparse edges connecting the

15

(a) Caltech36 (b) UCLA26

(c) MIT8 (d) Harvard1

path while the higher valued coefficient is a path with much more pronounced edges interconnecting
the path nodes. Although there is a slight difference in WS for UCLA, we notice how much more
of a difference ER has when comparing to WS and this most likely contributes to why the model
does so poorly when predicting between WS compared to ER for UCLA.

Since it appears that n components makes little to no difference on our accuracy, we can take a
brief look at ξ. We see that the altering of ξ leads to much more variation in the accuracy. There
is not necessarily a distinct pattern to say with certainty how ξ acts when varying it. It would
be preferred to repeat this experiment through several trials and see the average accuracy as it is
likely the variance of each trial is very high.

7.1.3. Multiclass Network Regression.

16 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

(a) Mean-Graph-Caltech36 (b) Mean-Graph-UCLA26

(c) Mean-Graph-MIT8 (d) Mean-Graph-Harvard1

In light of the previous result in 7.1.1, we took a step further to the multiclass-case regression.
Similarly, given baseline networks G1, . . . , Gd and test network G, we would like to encode G as a
single probability distribution vector p = (p1, . . . , pd), where pi means the predictive probability
that a random k-node subgraph in G is from the baseline network Gi for i = 1, . . . , d.

To visualize the result through proper manners, we here developed a function to plot a triangle
plots to show the prediction probabilities. Other than the 7 parameters used for the binary case,
we introduced one more parameter, baseline i here.

For baseline i= i, the function will use the three networks: ntwk list[i], ntwk list[i+ 1]
and ntwk list[i+2] as baseline networks and calculate the prediction probability (a 3-dimensional
array) for each network in the input list, based on the k-node sampled graphs. We provided
three standard points (1, 0, 0), (0, 1, 0) and (0, 0, 1) on the plot, comparing to the three baseline
networks points inside the triangle (in the same corresponding colors) to demonstrate how well
is the algorithm distinguishing the other two baseline networks to itself. We introduced the area
ratio between the small triangle formed by the three regressed baseline network plots and the big
triangle formed by the three standard plots to quantify this metric.

For example, we experimented with 10 college Facebook networks retrived from [Rossi and Ahmed,
2015], including Caltech36, UCLA26, MIT8, Wisconsin87, Harvard1, Berkeley13, Columbia2,

Michigan23, Princeton12 and Stanford3. From 6a, we noticed that with k = 50, the algorithm
can well distinguish the three baseline networks, with an area ratio of 0.67 and the structure
of Caltech36 network is very diffrent from other 9 college Networks, which are mostly lying in
between MIT8 and UCLA26.

17

(a) ER model (k = 10) (b) ER model (k = 40)

(c) WS model (k = 10) (d) WS model (k = 40)

Figure 4. Comparing ER and WS models with k = 10 and k = 40

This result inspired us to use networks other than Caltech36 as baseline to further examine the
structure similarity 6b. We found that even with the same k, it is harder to distinguish UCLA26,

MIT8 and Harvard1. We also found that Wisconsin87 and Berkeley13 are more like UCLA26, as
well as Princeton12 is more like MIT8, while Columbia2 and Stanford3 are approximately in the
middle of the plot, which altogether reveals more information about the network characteristics of
Facebook100.

7.2. Biological PPI Network.
The Protein-Protein Interaction (PPI) networks retrieved from BioGRID for various organisms

such as human, fruitfly, yeast, mouse, and worm provide critical insights into biological processes
and disease mechanisms[Rossi and Ahmed, 2015]. These networks are invaluable for comparative
studies, highlighting conserved interactions and unique pathways across species. Utilized in genetic,
developmental, and medical research, these PPI networks from BioGRID help elucidate the molecular
foundations of life, aiding researchers in understanding the complexity of cellular functions and
evolutionary biology.

We want to conduct experiments with these PPI networks to better understand the biological
network similarities among species and infer the unknown functions and properties based on the
well-studied proteins.

7.2.1. Binary Network Regression.
Similarly, we used function introduced in 7.1.1 to first understand the potential similarities

among the PPI networks of 5 different species, including yeast, fruitfly, worm, human and mouse.

18 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

(a) Caltech36 (b) UCLA26

(c) MIT8 (d) Harvard1

Figure 5. Comparison of ξ for different datasets (Caltech36, UCLA26, MIT8, and
Harvard1)

From the binary heatmap we find that yeast can be well distinguished from fruitfly, worm and
human, but it is hard for yeast and mouse, suggeseting the potential similarity of their latent motifs.
It also can be easily distinguished between fruitfly and mouse. For the pairs of fruitfly & worm and
fruitfly & human, the probability predicted for mouse are both surprisingly 1.0, indicating that
the mesoscale structure of mouse PPI networks is much more alike worm and human, rather than
fruitfly. Compared to worm, yeast’s PPI patterns are more silimar to human’s, which aligns with
the result of some biological studies.

7.2.2. Multiclass Network Regression.

19

(a) Multiclass Network Regression (k = 50)

with Caltech36 as baseline

(b) Multiclass Network Regression (k = 50)

without Caltech36 as baseline

Figure 6. Some Experiments of Multiclass Prediction - Facebook100

Table 1. Overview of PPI Networks from BioGRID

Organism Model Use Key Focus in PPI Network

Human (Homo sapiens)
Medical and genetic
research

Complex cellular processes,
disease pathways

Fruitfly
(Drosophila melanogaster)

Genetic and
developmental studies

Development, behavior

Plant (Arabidopsis thaliana) Plant biology
Development, metabolism,
environmental responses

Yeast (Saccharomyces cerevisiae) Cellular biochemistry
Fundamental cellular processes,
metabolism

Mouse (Mus musculus) Biomedical models
Genetic models of human
diseases

Worm (Caenorhabditis elegans)
Developmental and neural
biology

Development, aging, neural
circuitry

We moved one step further in the biological networks experiments as well. In the experiments,
we found that due to the randomness of the sampling and the selection of k’s, there are times
when we are not able to sample enough k−paths and trapped into the sampling process. In light
of this, we introduced parameters average and times, which enables the function to conduct the
supervised network dictionary learning process times tiems and calculate the average prediction
probability when average = True and skip folded hom = False (sampling k−walks), also it
gives the standard deviation of the coordinates to show the variability across iterations (as shown
in Figure 8b).

20 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

Figure 7. Binary Network Regression - PPI (k = 50)

From Figure 8a, where the baseline networks are bio-human, bio-plant and bio-yeast, we
notice that first these three networks can be well distinguished from each other, with an area
ration high 0f 0.85. Also, we find that mouse has a probability 0.93 to be predicted as plant and
fruitfly has a probability of 0.96 to be predicted as human, which is interesting and need further
exmaination with current biology studies. Worm is less likely to be predicted as yeast ad plant but
more likely to be predicted as human.

We display the average result of the 5 iterations of the experiment with baseline bio-yeast,

bio-worm and bio-fruitfly in Figure 8b. Similarily, the baseline networks can be well distin-
guished. It suggested that compared to other two networks, human PPI network has more similar
structure with fruitflt, which is aligning with our observations in 8a. Mouse is predicted as worm
with a high probability 1.0 and a relatively low standard deviation (0, 0, 0). Plant is closet to
worm, while the standard deviation is a little bit larger compared to other results on the plot.

These observations inspires us to do further reproducible and verifiable experiments to reveal
the potential inference using network regression.

21

(a) Multiclass Network Regression

Baseline 1

(b) Multiclass Network Regression

Baseline 2

Figure 8. Some Experiments of Multiclass Prediction - Biological Networks

8. Conclusion and Future Works

In this paper, we propose our interpretable Supervised Network Dictionary Learning (SNDL)
model for network regression, which is robust and efficient for prediction tasks and network affinity
prediction tasks. We validate our results through several numerical experiments using datasets
from both social and biological networks.

Future research directions include investigating the theoretical guarantees of the SNDL model
for prediction tasks, identifying appropriate methods or principles for selecting hyperparameters
such as r, n, and k, and conducting additional experiments to demonstrate that SNDL remains
computationally efficient for large-scale network data compared to other baseline methods. Addi-
tionally, synthetic networks with hard-coded properties could be generated to enhance clustering
performance by distinguishing between different categories. This approach would be especially useful
in handling challenging cases like the all-inclusive synthetic networks. Further exploration could
also involve incorporating node features into the dictionary learning and regression processes, which
may enhance the predictive capabilities of the SNDL algorithm, particularly for biological networks
where node attributes, such as protein function, are essential for classification. Moreover, the
methods developed in this project could be extended to brain networks, focusing on distinguishing
different states, such as active versus resting, or benign versus malignant, by adapting the SNDL
algorithm to address the unique properties of brain networks.

9. Reconstruction error bounds

The classical network reconstruction bound: G = (V,A), Grecons = (V, Â)

∥A− Â∥1,π
∥A ∨ Â∥1,π

= dJD(G,Grecons) ≤
1

k
Ex[∥Ax − Âx;W∥1].(9.1)

We need to assume that our dictionary W is effective to minimize the expected subgraph approxi-
mation error above.

22 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

Can we have a similar reconstruction error bound for predictive probabilities? Let p̂(G) =
(p̂1(G), . . . , p̂κ(G)), where pi(G) =predictive probability that G belongs to class i. β ∈ Rκ×r.
βi = ith row of β. Then

p̂i(G) = Ex[p̂i(Ax)](9.2)

= Ex

[
exp(βT

i W
TVec(Ax))

1 +
∑κ

c=1 exp(β
T
c W

TVec(Ax))

]
(9.3)

Suppose G has class 1. Then

p̂(G) ≈ (0, 1, 0, . . . , 0).(9.4)

|1(i=1) − p̂i(G)| = small(9.5)

1(i=c(G)) − Ex[p̂i(Ax)] = Ex[1(i=c(G))]− Ex[p̂i(Ax)](9.6)

= Ex[1(i=c(G)) − p̂i(Ax)](9.7)

Ex[log-likelihood function?](9.8)

9.1. Notations.

• Networks:
– G = (V,A): Original network with node set V and adjacency matrix A ∈ Rn×n.
– G′ = (V,A′): Another network with the same node set V and adjacency matrix

A′ ∈ Rn×n.
• Predictive Probabilities:

– For each class i ∈ {0, 1, 2, . . . , κ}, the predictive probability pi(G) is defined as:

pi(G) = Ex[p̂i(Ax)],

where:
∗ x: A subgraph sampled from G.
∗ Ax: Adjacency matrix of subgraph x.
∗ p̂i(Ax): Predictive probability for class i based on subgraph x.

• Activation Function:

ai(Ax) = β⊤
i W⊤Vec(Ax),

where:
– βi ∈ Rr: Coefficient vector for class i.
– W ∈ Rd×r: Dictionary matrix.
– Vec(Ax) ∈ Rd: Vectorized form of Ax.

• Predictive Probability for Subgraph x:

p̂i(Ax) =
exp(ai(Ax))∑κ
c=0 exp(ac(Ax))

.

• Jaccard Reconstruction Error:

dJD(G,Grecons) =
∥A− Â∥1
∥A ∨ Â∥1

.

23

9.2. Assumptions.

(1) Boundedness of Model Parameters:

∥βi∥2 ≤ Cβ , ∥W∥2 ≤ CW , ∀i.

(2) Bounded Activations:

|ai(Ax)| ≤Ma, ∀i,∀x.

(3) Uniform Sampling of Subgraphs: Subgraphs x are sampled uniformly at random from
all subgraphs of size k.

(4) Bounded Norm of A ∨ Â:

∥A ∨ Â∥1 ≤M, for some constant M.

9.3. Theorems. The network denoising and reconstruction (NDR) algorithm in Lyu et al. [2024]
works as follows. We seek to build a weighted network Grecons using the node set V and a weighted
adjacency matrix Arecons : V

2 → r. This network best approximates the observed network G, whose
subgraphs are generated by the latent motifs in W . Namely, for each nodes x, y ∈ V , we define

Arecons(x, y) = Ex

[
Âx(ix, jx) |x, y ∈ x

]
,(9.9)

where x is uniformly random k-paths in G, Âx is the best linear approximation of the adjacency
matrix Ax of the k-node induced subgraph on x in terms of the latent motifs L1, . . . ,Lr, {x, y ∈ x}
denotes the event that x uses both nodes x and y, and ix and jx are the unique integers in [k]
such that x(ix) = x and x(jx) = y, respectively. In Lyu et al. [2024], it was established that latent
motifs that are effective in reconstructing most subgraph patterns are also effective in reconstructing
the whole graph:

∥A−Arecons∥1
∥A ∨Arecons∥1

≤ 1

2k
Ex[∥Ax − Âx∥1],(9.10)

where a ∨ b := max(a, b).

1. Two baseline graphs G,G′

2. A test graph H ≈ G.
3. Learn (W, β) s.t. G ≈ ĜW, G′ ≈ Ĝ′

W, pW,β(H) ≈ (1, 0), where

pW,β(H) =
(
Ex[p̂0(A

H
x)], Ex[p̂1(A

H
x)]

)
(9.11)

d(G, ĜW) + d(G′, Ĝ′
W) + d((1, 0),pW,β(H)) ≤ SMF objective(W, β)(9.12)

Training:

dKL((1, 0),pW,β(G)) + dKL((0, 1),pW,β(G
′)) ≤ C + classification part of SMF objective(W, β)

(9.13)

d(G, ĜW) + d(G′, ĜW) ≤ recons. part of SMF objective(W, β)(9.14)

24 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

[YW:Connect the loss with KL divergence, and do the Jensen.]

1

2n

2n∑
i=1

ℓ(yi,ai) =
1

n

n∑
i=1

ℓ(0,ai) +
1

n

2n∑
i=n+1

ℓ(1,ai)

(9.15)

= C +
1

n

n∑
i=1

DKL((1, 0), 1− p̂(Axi
)) +

1

n

2n∑
i=n+1

DKL((0, 1), p̂(A
′
xi
))

(9.16)

≥ C +DKL((1, 0),
1

n

n∑
i=1

1− p̂(Ax)︸ ︷︷ ︸
=p̂0(G)

) +DKL((0, 1),
1

n

∑
i>n

p̂(A′
x)︸ ︷︷ ︸

=p̂1(G′)

) (Jensen, convexity of KL)

(9.17)

Same computation in the population version:

Ex[ℓ(y,a)] ≥ C +

1∑
c=0

DKL(δc,Ex[p̂c(Ax)1(y = c)])(9.18)

Given (xi, yi),

ℓ(β) =
1

n

n∑
i=1

logPβ(ŷi = yi |xi)(9.19)

=
1

n

n∑
i=1

yi log pi + (1− yi) log pi︸ ︷︷ ︸
=CrossEntropy(y,x,β)

(9.20)

where pi = P(ŷ = 1 |xi). The above relation follows from noting that

P(ŷ = yi |xi) = pyi

i (1− pi)
1−yi .(9.21)

To verify this claim, yi = 1. Then

logPβ(ŷi = yi |xi) = log
exp(⟨β,x⟩)

1 + exp(⟨β,x⟩)
(9.22)

=(9.23)

Define qi,0 = 0; For c = 1, ..., κ

(9.24) qi,c =

{
1 if c = yi,

0 o.w..

Since

ℓ(yi,ai) = −(aiyi − log(1 +

κ∑
k=1

expai,k)).(9.25)

25

then we have

DKL(q∥p) =
κ∑

c=0

qi,c︸︷︷︸
=1(yi=c)

log(
qi,c
pi,c

)

=

κ∑
c=0

1(yi = c) log 1(yi = c)− 1(yi = c) log pi(β)

= Const.−
κ∑

c=0

1(yi = c) log pi(β)

= Const.+NegativeLogLikelihood

dKL((1, 0),pW,β(G)) ≈ |1− p̂0(G)|+ |0− p̂1(G)|(9.26)

Theorem 9.1. For any two networks G and G′ with adjacency matrices A and A′, the predictive
probabilities pi(G) are Lipschitz continuous with respect to A, i.e., there exists a constant L such
that:

|pi(G)− pi(G
′)| ≤ L∥A−A′∥F ,

where ∥ · ∥F denotes the Frobenius norm.

|p̂i(Ax)− p̂i(A
′
x)| ≤ L1∥Ax −A′

x∥1(9.27)

|pi(G)− pi(G
′)| = |E[p̂i(Ax)]− E[p̂i(A′

x)]|(9.28)

≤ E[|p̂i(Ax)− p̂i(A
′
x)|](9.29)

≤ L1E [∥Ax −A′
x∥1](9.30)

|pi(G)− pi(Grecons)| = |E[p̂i(Ax)]− E[p̂i(A′
x)]|(9.31)

≤ E[|p̂i(Ax)− p̂i(A
′
x)|](9.32)

≤ L1E [∥Ax −A′
x∥1](9.33)

F (W, β) = SMF objective that we minimize to find optimal W and β(9.34)

= measure of accuracy in the subgraph level(9.35)

(some measure of global accuracy of our problem) ≤ 1

k
F (W, β)??(9.36)

Given baseline graphs G1, G2:

Global network recons error = d(G1, G1;recons)
2 + d(G1, G2;recons)

2(9.37)

What is the global level of regression model? Formulate a regression model for the true labels
following logistic regression.

Compare with

∥A− Â∥1,π
∥A ∨ Â∥1,π

= dJD(G,Grecons) ≤
1

k
Ex[∥Ax − Âx;W∥1].(9.38)

26 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

Proof. Consider corresponding subgraphs x from G and x from G′ (over the same nodes).

∥Ax −A′
x∥F ≤ ∥A−A′∥F ,

since Ax and A′
x are submatrices of A and A′, respectively.

For each class i:

|ai(Ax)− ai(A
′
x)| =

∣∣β⊤
i W⊤(Vec(Ax)−Vec(A′

x))
∣∣

≤ ∥βi∥2∥W⊤∥2 ∥Vec(Ax)−Vec(A′
x)∥2

≤ CβCW ∥Vec(Ax)−Vec(A′
x)∥2

≤ CβCW ∥Ax −A′
x∥F

≤ CβCW ∥A−A′∥F .

[YW:tight bound in the last step?]

Suppose the softmax function σ : Rκ+1 → [0, 1]κ+1 maps a to p̂(Ax).
Let a(Ax) = [a0(Ax), a1(Ax), . . . , aκ(Ax)]

⊤. Over the domain where |ai(Ax)| ≤Ma, the softmax
function is Lipschitz continuous with constant Ls depending on κ+ 1.

Therefore:

∥p̂(Ax)− p̂(A′
x)∥1 ≤ Ls∥a(Ax)− a(A′

x)∥2.
Using the bound on activations:

∥a(Ax)− a(A′
x)∥2 ≤

√
κ+ 1max

i
|ai(Ax)− ai(A

′
x)|

≤
√
κ+ 1 · CβCW ∥A−A′∥F .

[YW:Keep the last step to subgraph not the full graph ∥A−A′∥F]
Therefore:

∥p̂(Ax)− p̂(A′
x)∥1 ≤ Ls

√
κ+ 1CβCW ∥A−A′∥F .

[YW:Normalize the vector by difference between softmax distributions.]
Since:

pi(G) = Ex[p̂i(Ax)], pi(G
′) = Ex[p̂i(A

′
x)],

we have:

|pi(G)− pi(G
′)| = |Ex[p̂i(Ax)− p̂i(A

′
x)]| ≤ Ex [|p̂i(Ax)− p̂i(A

′
x)|] .

Using the bound from Step 1:

|p̂i(Ax)− p̂i(A
′
x)| ≤ ∥p̂(Ax)− p̂(A′

x)∥1 ≤ Ls

√
κ+ 1CβCW ∥A−A′∥F .

Therefore:

|pi(G)− pi(G
′)| ≤ Ex

[
Ls

√
κ+ 1CβCW ∥A−A′∥F

]
= Ls

√
κ+ 1CβCW ∥A−A′∥F .

We have shown that:

|pi(G)− pi(G
′)| ≤ L∥A−A′∥F ,

where:

L = Ls

√
κ+ 1CβCW .

□

Theorem 9.2. Under the above assumptions, the error in the estimated predictive probabilities for
each class i ∈ {0, 1, . . . , κ} satisfies:

|pi(G)− p̂i(G)| ≤
√
nLM

k
Ex[∥Ax − Âx;W∥1].

27

Proof. From the Lipschitz continuity assumption:

|pi(G)− pi(Grecons)| ≤ L∥A− Â∥F .

Since ∥A− Â∥F ≤
√
n∥A− Â∥1, we have:

|pi(G)− pi(Grecons)| ≤
√
nL∥A− Â∥1.(9.39)

From the Jaccard reconstruction error:

dJD(G,Grecons) =
∥A− Â∥1
∥A ∨ Â∥1

≤ 1

k
Ex[∥Ax − Âx;W∥1].

Therefore:

∥A− Â∥1 ≤M · dJD(G,Grecons) ≤
M

k
Ex[∥Ax − Âx;W∥1].

Substituting the bound from (9.39):

|pi(G)− p̂i(G)| ≤
√
nL · M

k
Ex[∥Ax − Âx;W∥1] =

√
nLM

k
Ex[∥Ax − Âx;W∥1].

In conclusion, we obtain:

|pi(G)− p̂i(G)| ≤
√
nLM

k
Ex[∥Ax − Âx;W∥1].

□

28 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

References

W. Austin, D. Anderson, and J. Ghosh. Fully supervised non-negative matrix factorization for
feature extraction. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pages 5772–5775, 2018.

Samuel Burer and Renato DC Monteiro. Nonlinear programming and low-rank semidefinite
programming with applications to combinatorial optimization. In SIAM Journal on Optimization,
volume 14, pages 434–470, 2003.

Deng Cai, Xiaofei He, and Jiawei Han. Graph regularized non-negative matrix factorization for
data representation. IEEE transactions on pattern analysis and machine intelligence, 33(8):
1548–1560, 2010.

Matthias Dehmer. Strukturelle analyse web-basierter dokumente. Springer-Verlag, 2007.
Matthias Dehmer and Frank Emmert-Streib. Mining graph patterns in web-based systems: A

conceptual view. Genres on the web: Computational models and empirical studies, pages 237–253,
2011.

Frank Emmert-Streib and Matthias Dehmer. Networks for systems biology: conceptual connection
of data and function. IET systems biology, 5(3):185–207, 2011.

Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of graph matching, network
alignment and network comparison. Information Sciences, 346-347:180–197, 2016. ISSN 0020-
0255. doi: https://doi.org/10.1016/j.ins.2016.01.074. URL https://www.sciencedirect.com/

science/article/pii/S002002551630010X.
Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M Airoldi. A survey of

statistical network models, 2009. URL https://arxiv.org/abs/0912.5410.
Rick Grannis. Sampling Effects in Social Network Analysis, page 2281–2290. Springer New York,
2018. ISBN 9781493971312. doi: 10.1007/978-1-4939-7131-2 37. URL http://dx.doi.org/10.

1007/978-1-4939-7131-2_37.
L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss–seidel method

under convex constraints. Operations research letters, 26(3):127–136, 2000.
Shawn Gu and Tijana Milenković. Data-driven biological network alignment that uses topological,

sequence, and functional information. BMC Bioinformatics, 22(1), January 2021. ISSN 1471-2105.
doi: 10.1186/s12859-021-03971-6. URL http://dx.doi.org/10.1186/s12859-021-03971-6.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Peter D Hoff. Modeling homophily and stochastic equivalence in symmetric relational data. In
Advances in Neural Information Processing Systems, pages 657–664, 2008.

Brian P. Kelley, Roded Sharan, Richard M. Karp, Taylor Sittler, David E. Root, Brent R. Stockwell,
and Trey Ideker. Conserved pathways within bacteria and yeast as revealed by global protein
network alignment. Proceedings of the National Academy of Sciences, 100(20):11394–11399,
September 2003. ISSN 1091-6490. doi: 10.1073/pnas.1534710100. URL http://dx.doi.org/10.

1073/pnas.1534710100.
Yoon Kim, Emily Denton, Luong Hoang, and Alexander M. Rush. Convolutional matrix factorization

for document modeling. Proceedings of the 33rd International Conference on Machine Learning,
pages 699–707, 2016.

Eric D Kolaczyk and Gábor Csárdi. Statistical analysis of network data with R, volume 65. Springer,
2014.

David Krackhardt. Predicting with networks: Nonparametric multiple regression analysis of dyadic
data. Social Networks, 10(4):359–381, 1988.

Oleksii Kuchaiev, Tijana Milenković, Vesna Memǐsević, Wayne Hayes, and Nataša Pržulj. Topological
network alignment uncovers biological function and phylogeny. Journal of The Royal Society
Interface, 7(50):1341–1354, March 2010. ISSN 1742-5662. doi: 10.1098/rsif.2010.0063. URL
http://dx.doi.org/10.1098/rsif.2010.0063.

https://www.sciencedirect.com/science/article/pii/S002002551630010X
https://www.sciencedirect.com/science/article/pii/S002002551630010X
https://arxiv.org/abs/0912.5410
http://dx.doi.org/10.1007/978-1-4939-7131-2_37
http://dx.doi.org/10.1007/978-1-4939-7131-2_37
http://dx.doi.org/10.1186/s12859-021-03971-6
http://dx.doi.org/10.1073/pnas.1534710100
http://dx.doi.org/10.1073/pnas.1534710100
http://dx.doi.org/10.1098/rsif.2010.0063

29

Daniel Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. Advances in
neural information processing systems, 13:556–562, 2000.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788, 1999.

Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. Advances
in neural information processing systems, 13:556–562, 2001.

J. Lee, H. Lyu, and W. Yao. Exponentially convergent algorithms for supervised matrix factorization.
Neural Information Processing Systems, 2023a.

J. Lee, H. Lyu, and W. Yao. Supervised matrix factorization: Local landscape analysis and
applications. In Proceedings of the 41st International Conference on Machine Learning, 2024a.

Joowon Lee, Hanbaek Lyu, and Weixin Yao. Exponentially convergent algorithms for
supervised matrix factorization. Neural Information Processing Systems, 2023b.

Joowon Lee, Hanbaek Lyu, and Weixin Yao. Supervised matrix factorization: Local landscape
analysis and applications. In Forty-first International Conference on Machine Learning, 2024b.
URL https://openreview.net/forum?id=YlJy1FcM9E.

J. Leuschner, M. Schmidt, P. Fernsel, et al. Supervised non-negative matrix factorization methods
for maldi imaging applications. Bioinformatics, 35(11):1940–1947, 2019.

Yingjie Li, Elizaveta Levina, and Ji Zhu. Generalized linear models with network-linked responses.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(2):453–476, 2019.

Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger. Isorankn: spectral
methods for global alignment of multiple protein networks. Bioinformatics, 25(12):i253–i258,
May 2009. ISSN 1367-4803. doi: 10.1093/bioinformatics/btp203. URL http://dx.doi.org/10.

1093/bioinformatics/btp203.
Hanbaek Lyu, Facundo Memoli, and David Sivakoff. Sampling random graph homomorphisms and

applications to network data analysis. Journal of Machine Learning Research, 24:1–79, 2023.
Hanbaek Lyu, Yacoub H Kureh, Joshua Vendrow, and Mason A Porter. Learning low-rank latent

mesoscale structures in networks. Nature Communications, 15(1):224, 2024.
J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach. Supervised dictionary learning. In
Advances in Neural Information Processing Systems, volume 21, pages 1033–1040, 2008.

W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National Academy
of Sciences, 116(44):22071–22080, October 2019. ISSN 1091-6490. doi: 10.1073/pnas.1900654116.
URL http://dx.doi.org/10.1073/pnas.1900654116.

Mark E. J. Newman. Networks. Oxford University Press, Oxford, UK, second edition, 2018.
Juyong Park and Mark EJ Newman. Statistical mechanics of networks. Physical Review E, 70(6):

066117, 2004.
A. Ritchie, L. Balzano, D. Kessler, et al. Supervised pca: A multiobjective approach. arXiv preprint
arXiv:2011.05309, 2020.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL https://networkrepository.com.

Roded Sharan, Silpa Suthram, Ryan M. Kelley, Tanja Kuhn, Scott McCuine, Peter Uetz, Taylor
Sittler, Richard M. Karp, and Trey Ideker. Conserved patterns of protein interaction in multiple
species. Proceedings of the National Academy of Sciences, 102(6):1974–1979, February 2005.
ISSN 1091-6490. doi: 10.1073/pnas.0409522102. URL http://dx.doi.org/10.1073/pnas.

0409522102.
Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction networks
with application to functional orthology detection. Proceedings of the National Academy of
Sciences, 105(35):12763–12768, September 2008. ISSN 1091-6490. doi: 10.1073/pnas.0806627105.
URL http://dx.doi.org/10.1073/pnas.0806627105.

https://openreview.net/forum?id=YlJy1FcM9E
http://dx.doi.org/10.1093/bioinformatics/btp203
http://dx.doi.org/10.1093/bioinformatics/btp203
http://dx.doi.org/10.1073/pnas.1900654116
https://networkrepository.com
http://dx.doi.org/10.1073/pnas.0409522102
http://dx.doi.org/10.1073/pnas.0409522102
http://dx.doi.org/10.1073/pnas.0806627105

30 Q. KUANG, Y. WEI, D. JIANG, AND H. LYU

Tom AB Snijders, Gerhard GG van de Bunt, and Christian EG Steglich. Introduction to stochastic
actor-based models for network dynamics. Social Networks, 32(1):44–60, 2006.

Sucheta Soundarajan, Tina Eliassi-Rad, and Brian Gallagher. A guide to selecting a network simi-
larity method. In SDM, 2014. URL https://api.semanticscholar.org/CorpusID:10509701.

Mattia Tantardini, Francesca Ieva, Lucia Tajoli, and Carlo Piccardi. Comparing methods for
comparing networks. Scientific Reports, 9(1), November 2019. ISSN 2045-2322. doi: 10.1038/
s41598-019-53708-y. URL http://dx.doi.org/10.1038/s41598-019-53708-y.

John 1953 Willett. Similarity and clustering in chemical information systems. John Wiley & Sons,
Inc., 1987.

Peter Wills and François G. Meyer. Metrics for graph comparison: A practitioner’s guide. PLOS
ONE, 15(2):e0228728, February 2020. ISSN 1932-6203. doi: 10.1371/journal.pone.0228728. URL
http://dx.doi.org/10.1371/journal.pone.0228728.

S. J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.
Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization
with applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging
Sciences, 6(3):1758–1789, 2013.

Qi Kuang, Department of Mathematics, University of Wisconsin – Madison, Madison, WI 53706
Email address: qkuang5@wisc.edu

Yi Wei, Department of Mathematics, University of Wisconsin – Madison, Madison, WI 53706

Email address: ywei224@wisc.edu

David Jiang, Department of Mathematics, University of Wisconsin – Madison, Madison, WI 53706

Email address: djiang38@wisc.edu

Hanbaek Lyu, Department of Mathematics, University of Wisconsin – Madison, Madison, WI 53706

Email address: hlyu@math.wisc.edu

https://api.semanticscholar.org/CorpusID:10509701
http://dx.doi.org/10.1038/s41598-019-53708-y
http://dx.doi.org/10.1371/journal.pone.0228728

	1. Introduction
	1.1. Our Contributions

	2. Related Works
	2.1. Network Regression
	2.2. Metrics for Similarity between Networks
	2.3. Network Alignment for Biological Networks
	2.4. Supervised Matrix Factorization

	3. Preliminaries
	4. Statement of the problem
	5. Methods
	5.1. SMF and BCD Algorithm
	5.2. Supervised Network Dictionary Learning

	6. Random network models
	6.1. Erdös-Rényi
	6.2. Barabási–Albert
	6.3. Watts–Strogatz
	6.4. Configuration Model

	7. Experiments
	7.1. Facebook100
	7.2. Biological PPI Network

	8. Conclusion and Future Works
	9. Reconstruction error bounds
	9.1. Notations
	9.2. Assumptions
	9.3. Theorems

	References

