pegfid16@offset pgfid18Qoffset pgfid20Qoffset
THE NON-PLANARITY OF SL(2,Z)-ORBITS OF ORIGAMIS

1.

1.1.
1.2
1.3.
1.4.
1.5.

2

2.1.
2.2.

3

3.1
3.2.
3.3.

DAVID JIANG

ABSTRACT. An origami is a mathematical construct to help understand the
fundamental underpinnings of topology. In this paper we explore a new method
for applying transformations to new origamis and look at their orbit graphs to
see non-planarity. This will help us gain new further evidence for things such
as McMullen conjectures.

CONTENTS

Introduction
Origamis
Transformations
Permutation Groups
Graph Theory
Strata

Implementation
Sage Math and Surface Dynamics
Our Code

Current Results
Data
Results
Open Questions

—_

O 00~ J O UL U i W Wk NN

2 DAVID JIANG

1. INTRODUCTION
1.1. Origamis. We can define connected unit squares in R? with a ruleset defined

as to where edges or squares are connected to each other.

Commonly shown in topology classes, a genus-1 torus can be represented as an
origami as follows:

o]
[

T+
1T

Where the sides labelled with I are connected with each other and II is connected
with II. This can be shown with a piece of paper yourself or through visualization.
However, these origamis will grow rapidly where it no longer is feasible to do it
with paper yourself or through visualization such as:

T hvad
T— VT
[as] [as]
:-(5 | 6 :-(
g | w
h{ - ba s
vV \&"
> I >
i i
o] 3 | 4 o]
L - - XL
v
e [as]
T2 F
[an] [anl
jus i R an
T
T

This is defined as a 6 squared origami and will be one of the main classes of origamis
that we will look at.

1.2. Transformations. We can act on these origamis by the generators of SL(2, Z)

- -)

The group action of the generators on our origamis is the same as the linear trans-
formation on R? that the matrices normally have. Where T is a horizontal shear
and S is a vertical shear. For example, we will look at

1 1
3 S (R
i AT
s

We notice that nothing has changed about this origami because we can connect
each side with each side. Both of these origamis will result in a genus-2 object such
as:

el
-

nr
TV
—
-
RN
w
n

THE NON-PLANARITY OF SL(2,Z)-ORBITS OF ORIGAMIS 3

We note that there exist other 3 square origamis that can be folded into this object
as such:

F F
I I
- -]]
[3 [[3 [
,,,,,, T —_—— - - — = HF
ITT IIT
! !
N ! N ! R
> I > > I >
e e i e
— 1 I 2 — - 1 I 2 ol
| |
I I
F TF THF F
T T 1T T

These origamis behave slightly different when acting with our generators on these.
Running through the transformations through 7" and S and then seeing what
origami they turn into (they aren’t all identity transformations) gives us the fol-

lowing orbit graph:
S T
EOBOWO=
S T

|
r 12 37
|
A B C

1.3. Permutation Groups. All of our origamis are uniquely defined by their per-
mutation group representation. Another way to think about the origami is instead
of folding the papers, each edge labeled corresponds to a door to the other edge. We
then think of the permutation where we shift everything either horizontally or ver-
tically. This is what actually defines our orbits. For example, B can be described
has (h,v) = ((1,2),(1,3)) since when shifting everything horizontally, we notice
that 1 — 2 while 3 — 3, which gives us the transposition (1,2) for a horizontal
movement. Similarly, vertical gives us (1,3). We notice that origami A corresponds
to ((1,2,3),(1,3)) and Cis ((1,2),(1,3,2)). So we notice that all the nodes on our
orbit graph correspond to a unique permutation representation of S3 @ Ss.

1.4. Graph Theory. Although we’ve already mentioned graphs from orbit graphs,
we will give a more formal introduction. A graph is defined as a set of nodes and
edges where edges are connected to various nodes. For example, the graph that we
previously had is described as:

S T
SOSOSCL

Where we have the nodes A, B, and C and then the edges are described by the
arrows. We now have the machinery required to describe the problem that we want
to look at. When generalizing an n—square origami, is it possible to create and
prove a general permutation representation that will result in the entire orbit graph
to be non-planar.

4 DAVID JIANG

Planar graphs are graphs that can be drawn on the plane in such a way that
no edges intersect one another.

Roughly speaking, we are interested in showing that a certain infinite family of
graphs is eventually non-planar. This will give indirect evidence that the family
could form a family of expander graphs (useful objects in many areas of computer
science and mathematics).

The outline of the way we will prove non-planarity is invoking Kuratowski-
Wagner Theorem.

Theorem 1.1. A graph is planar if and only if it does not contain K3 (left) or
K5 (right) as a graph minor (obtained by deleting edges, vertices and by contracting
edges).

So if we can find a K3 3 or K5 in our orbit graphs, then we can invoke our theorem
and therefore it would be non-planar. This has already been done for certain graphs
by Jeffreys and Matheus [JM], now we will try to replicate the process for graphs
with stratum #(4) instead of #H(2) as described in their paper.

1.5. Strata. The vertices of the squares used to make an origami can have more
than 27 angle around them. We call such points cone points. We say that an
origami lies in the stratum H(k1, k2, ..., ky) if it has n cone points, and each has
cone angle 27 + k; - 2r. The Gauss-Bonnet (or Riemann-Roch) Theorem allows us
to determine the genus g through the formula Y " | k; = 29 — 2.

Thus, for example, any surface in #(2) should have genus 2, and it has only one
cone point with angle 67, as follows:

T ° 1T ° T
| |
! |

I]
> ! ! >
e 1
Sl 1 ! 2 | 3 -
I l
T T
TIT Py 1T Py I
TIT hd T hd T

Our focus for this project will be origamis lying in the stratum #(4). So, since
4 =2-3— 2, we have origamis of genus 3 with a single cone point.

THE NON-PLANARITY OF SL(2,Z)-ORBITS OF ORIGAMIS 5

2. IMPLEMENTATION

Our goal of the project as mentioned is to observe non-planarity in orbit graphs.
What we will do is use various packages in Python that allow us to generate orbit
graphs for higher square-tiled surfaces and then take 6 different nodes and see if
they are in a K3 3. This will give us the information we need to know when a
certain n—tiled surface is non-planar. From there, we will try to generalize the
permutation pattern that we have and extrapolate for larger n.

2.1. Sage Math and Surface Dynamics. We worked primarily through Python
with the packages Sage [SM] and Surface Dynamics. Sage is an open source library
that is built ontop of NumPy, SciPy, matplotlib, and many other academic Python
packages. It functions as a computer algebra system (CAS) which allows plenty
of tools to work with when looking at algebraic, combinatoric, or graph theoretic
questions.

Surface Dynamics [SD] is another python package built off the works of Sage that
works on specific problems of math. Surface dynamics allows us to work with
square-tiled surfaces, origamis, graphs and strata. It allows us to have access to
databases of origamis and allows quick computation of orbit graphs and permuta-
tion representations of various origamis. These two packages provide us all that
we need in order to create programs that will tell us if we have non-planar orbit
graphs.

2.2. Our Code.

from surface_dynamics import *
import itertools
D = OrigamiDatabase()

n==6
g = D.query(nb_squares = n, stratum = AbelianStratum(4))
for o in q:
if o.is_primitive() and o.orientation_data() == [] and o.monodromy().order() == factorial(n)/2:

o
0.teichmueller_curve()
C.orbit_graph(r_edges = True, 1_edges = True, s2_edges = False, s3_edges = False)
. show()
= G.to_simple()
= G.to_undirected()
print(G.is_planar())
for trip_1 in itertools.combinations(G,3):
G_hat = [x for x in G if not x in trip_1]
for trip_2 in itertools.combinations(G,3):
disjoint_check = True
for o in trip_1:
if o in trip_2:
disjoint_check = False
break
if not disjoint_check:
pairs = [list(z) for z in itertools.product(trip_1, trip_2)]
try:

[aE NN NaN-)

G.disjoint_routed_paths(pairs)
except EmptySetError:
continue
else:
for i in range(1,4):
print(f"0_{i} = ({trip_1[i-1].r()}, {trip_1[i-11.u()})")
for i in range(1,4):
print(f"0_{i+3} = ({trip_2[i-1].r()}, {trip_2[i-1]1.u()})")
print()

6 DAVID JIANG
I will go through line by line explaining what exactly this code accomplishes.

As previously mentioned, surface dynamics gives us a database of origamis. We
will use this database and look at the origamis for n = 6 as a starting point. We
want to clarify that the origami has exactly 6 sqaures and that it has a stratum of
H(4). With these parameters, ¢ now provides us with all of our origamis that we
would want to look at. We are primarily interested in primitive origamis, which are
origamis that are transitive with only trivial partitions. So the first if statement
allows us to prune all of the origamis that we aren’t interested in looking at.

Then the first 4 lines after the if statement generate the orbit graph that we are
curious in. The parameters are just extra things that allow for easier analysis. We
next convert this graph into a simple undirected graph so our itertools can work
some graph theory magic on it.

Afterwards we starting to use itertools to select 3 nodes on our orbit graph. These
will denote the first set of nodes in our potential K3 3. Then we select another 3
nodes to be our second set for our K3 3. We want to ensure that these are disjoint,
so as the name would imply, disjoint check accomplishes this for us.

Now we will pair up all possible pairs from set 1 and set 2 through itertools product.
This is just taking the cartesian product between the two sets. We will try to find
a disjoint path from one node in the firts set to the other nodes in the second set.
These will have to be disjoint in order for the minor requirements to hold. If there
is an error, then we will go onto the next set of nodes. Otherwise, we will print all
of the possible results that result in a non-planar graph.

THE NON-PLANARITY OF SL(2,Z)-ORBITS OF ORIGAMIS 7

3. CURRENT RESULTS

3.1. Data. From running the code shown above, we get that there are thousands
of different nodes that give us a valid non-planar K3 3. For perspective, this is the
orbit graph of 6 tiles:

As an example of the various nodes that work for this graph, we have the following
few choices:

8 DAVID JIANG

0.1 = ((3,4)(5,6), (1,2,3,4,5))

0.2 = ((3,4)(5,6), (1,2,3,5,6))

0.3 = ((2.3,4.5.6). (1.2)(5.6))

0_4 = ((2,3,4,5,6), (1,2)(3,4))

0.5 =((2,3,4,5,6), (1,2,3,4,6))

0.6 = ((1,2)(3,4,5,6), (1,3,5,6)(2,4))
0_1 = ((3,4)(5,6), (1,2,3,4,5))

0.2 = ((3,4)(5,6), (1,2,3,5,6))

0.3 =((2,3,4,5,6), (1,2)(5,6))

0.4 = ((2,3,4.5.6). (1.2)(3.4))
0_5=((2,3,4,5,6), (1,2,3,4,6))

0.6 = ((1,2)(3,4,5,6), (1,3,6,2,4))
0_1= ((3,4)(5,6), (1,2,3.4,5))

0.2 = ((3,4)(5,6), (1,2,3,5,6))

0.3 = ((2,3,4,5,6), (1,2)(5,6))

0.4 = ((2,3,4,5,6), (1,2)(3,4))

0_5 = ((2,3,4,5.6), (1,2,3,4,6))

0.6 = ((1,2)(3,4,5,6), (1,3)(2,5,6,4))
0.1 = ((3,4)(5,6), (1,2,3,4,5))

0_2 = ((3,4)(5,6), (1,2,3,5,6))

0.3 = ((2,3,4,5,6), (1,2)(5,6))

0.4 = ((2,3,4,5,6), (1,2)(3,4))
0.5=((2,3,4,5,6), (1,2,3,4,6))

0_6 = ((1,2)(3,4,5.6), (1,3,2,5,6))
0.1 = ((3,4)(5,6), (1,2,3,4,5))

0.2 = ((3,4)(5,6), (1,2,3,5,6))

0.3 = ((2.3,4.5.6). (1.2)(5.6))

0_4 = ((2,3,4,5,6), (1,2)(3,4))

0.5 =((2,3,4,5,6), (1,2,3,4,6))

0.6 = ((1,2)(3,4,5,6), (1,3,6,4)(2,5))

3.2. Results. We want to be able to generalize these data points for K33. So
looking at some of the points in the previous section, we notice that the first point
can be generalized as two transpositions between (n—1,n) and either (n/2,n/241)
or (n —3,n —2). We can do something similar for several other nodes.

THE NON-PLANARITY OF SL(2,Z)-ORBITS OF ORIGAMIS 9

from surface_dynamics import x
import itertools
D = OrigamiDatabase()

n==8
q = D.query(nb_squares = n, stratum = AbelianStratum(4))
for o in q:
if o.is_primitive() and o.orientation_data() == [] and o.monodromy().order() == factorial(n)/2:
0=o0
C = O.teichmueller_curve()
G = C.orbit_graph(r_edges = True, 1_edges = True, s2_edges = False, s3_edges = False)
G.show()
G = G.to_simple()

G = G.to_undirected()
print(G.is_planar())

01 = Origami('(5,6)(7,8)','(1,2,3,4,5,6,7)")

02 = Origami('(5,6)(7,8)','(1,2,3,4,5,7,8)")

03 = Origami('(2,3,4,5,6,7,8)",'(1,2,3,4,5,7)(6,8)"')

04 = Origami('(5,6)(7,8)','(1,2,3,4,5,6,7)")

05 = Origami('(4,5,6,7,8)','(1,2,3,4)(7,8)")

06 = Origami('(2,3,4,5,6,7,8,9,10)','(1,2,4,5,6,7,8,9,10)")

trip_1 = (01, 02, 03)
G_hat = [x for x in G if not x in trip_1]
for trip_2 in itertools.combinations(G,3):
print(trip_2[e])
print(trip_2[1])
print(trip_2[2])
disjoint_check = True
for o in trip_1:
if o in trip_2:
disjoint_check = False
break
if not disjoint_check:
pairs = [list(z) for z in itertools.product(trip_1, trip_2)]
try:
G.disjoint_routed_paths(pairs)
except EmptySetError:
continue
else:
for i in range(1,4):
print(f"0_{i} = ({trip_1[i-11.r()}, {trip_1[i-11.u()})")
for i in range(1,4):
print(f"o_{i+3} = ({trip_2[i-1].r()}, {trip_2[i-11.u()})™)
print()

We now use the following code depicted above to test those 6 points that we have
attempted to generalize for an n = 8 orbit graph. Some common issues that get
run into is the startum not being correct. Sometimes you find that the origami you
tried to generalize to is actually of H(2) or H(2,2). So even though these general-
ized nodes might be non-planar for our K3 3 they are still not correct because they
don’t apply directly to the problem that we are trying to solv.

Another approach we can take is find several points that seem to appear in all
of our various K33 for n = 6 and then try to generalize those simply and then
running some sort of iteration between the others to find potential K33 in n =8
instead. This circumvents the issue of being worried about the strata of the origamis
because we can prefilter all of the strata. We have not attempted this approach
enough yet but we will attempt to do so next semester or over winter break.

10 DAVID JIANG

There are various other things we can try. It makes sense to actually look at
the origamis that show up often in n = 6. To do so we can display them using
surface dynamics. Looking at these we can instead try to generalize based on the
actual square tilings instead of the square tiles themselves.

3.3. Open Questions. We have still not found a way to generalize for n = 8 and
other even amounts. We additionally want to do something similar for the odd
numbers. We imagine there would be something similar, but it isn’t directly gener-
alized from evens to odd since a lot of ways of generalization are built on the parity
of the numbers that we are working with.

Additionally, once we find out what generalization we have then we will also need
to prove that they will always give you a non-planar graph. The issue is that origi-
nally finding a way to prove that the orbit graphs were non-planar without finding
a generalized set of 6 nodes that satisfy our K3 3. This will make it signficantly
easier to prove.

Another thing to think about is the orbit graphs of the other generators for SL(2,Z).
They will generate various other orbit graphs, however, it’s expected that they will
give more gross results.

THE NON-PLANARITY OF SL(2,Z)-ORBITS OF ORIGAMIS 11

[1] V. et al. Delecroix. surface dynamics - SageMath package, Version 0.4.7. July
2021. DOI: 10.5281 /zenodo.3237923. URL: https://doi.org/10.5281/zenodo.3237923.

[2] Luke Jeffreys and Carlos Matheus. “Non-planarity of SL(2, Z)-orbits of origamis
in H(2)”. In: Bulletin of the London Mathematical Society 55 (May 2023). DOI:
10.1112/blms.12849.

[3] Carlos Matheus, Martin Moeller, and Jean-Christophe Yoccoz. “A criterion
for the simplicity of the Lyapunov spectrum of square-tiled surfaces”. In: Inven-
tiones mathematicae 202 (May 2013). DOI: 10.1007/s00222-014-0565-5.

[4] The Sage Developers. SageMath, the Sage Mathematics Software System (Ver-
sion 10.2). https://www.sagemath.org. 2023.

