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Abstract. We study the issue introduced by Buck-Lee-Platnick-Wheeler-Zumbrun of synchro-
nous vs. asynchronous coalitions in multiplayer games, that is, the difference between coalitions
with full and partial communication, with a specific interest in the context of continuous Guts
poker where this problem was originally formulated. We observe for general symmetric multiplayer
games, with players 2-n in coalition against player 1, that there are three values, corresponding to
symmetric Nash equilibrium, optimal asynchronous, and optimal synchronous strategies, in that
order, for which inequalities may for different examples be strict or nonstrict (i.e., equality) in any
combination. Different from Nash equilibria and synchronous optima, which may be phrased as
convex optimization problems, or classical 2-player games, determination of asynchronous optima
is a nonconvex optimization problem. We discuss methods of numerical approximation of this
optimum, and examine performance on 3-player rock-paper-scissors and discretized Guts poker.
Finally, we present sufficient conditions guaranteeing different possibilities for behavior, based on
concave/convexity properties of the payoff function. These answer in the affirmative the open
problem posed by Buck-Lee-Platnick-Wheeler-Zumbrun whether the optimal asynchronous coali-
tion value for 3-player guts is equal to the Nash equilibrium value zero. At the same time, we
present a number of new results regarding synchronous coalition play for continuous 3-player guts.
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1. Introduction

In this paper, we examine the topic introduced in [BLPWZ] of “synchronous” vs. “asynchronous”
coalitions in multiplayer zero-sum games, with a particular eye toward the context of Guts Poker
studied there. Consider an n-player symmetric zero-sum game, with payoffs Ψi(s1, . . . , sn) to
players i given a choice of strategies sj ∈ {1, . . . , N} for j = 1, . . . , n, under the restrictions (i)
(symmetry) Ψi is invariant under transpositions of different sj , j 6= i and equal to Ψj under
transpositions of si with sj , and (ii) (zero sum)

∑n
i=1 Ψi = 0. Then [N], there is a symmetric Nash

equilibrium consisting of identical mixed strategies, or randomly chosen choices with probability
densities pj = (pj1, . . . , pjN , for which departure by any single player results in a lower payoff for
that player. The value of this Nash equilibrium, by properties (i)-(ii), is necesssarily zero.

On the other hand, viewing this as a game between player 1 and a coalition of players 2-n
working together, we may ask what is the value of that (no longer symmetric) game, and what
is its relation to the Nash equilibrium. The asynchronous optimum is the optimal set of mixed
strategies for players 2-n, which includes identical mixed strategies, hence gives a value that is
necessarily less than or equal to the Nash equilibrium value. We call this asynchronous because the
players 2-n of the coalition, though they may agree beforehand with which probabilities each will
choose strategies {1, . . . , N}, they are not allowed to coordinate these choices, but must determine
them independently.

The synchronous optimum on the other hand, is defined as an optimal probability distribution

(1.1) qj2,...,jn , ji ∈ {1, . . . , N},
among the possible (n−1)N joint choices of players 2-n. Evidently, these include the asynchronous
strategies as the strict subset

(1.2) qj2,...,jn = Πn
i=2pi,ji
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of strategies of tensorial form, hence the synchronous optimum gives a value less than or equal to
that of the asynchronous one. We denote these values for convenience of discussion as

(1.3) VS ≤ VA ≤ VN = 0,

where VS is the synchronous coalition value, VA the asynchronous coalition value, and VN the
symmetric Nash equilibrium value for player 1.

We note, by the fundamental theorem of finite 2-player zero-sum games [vN], that

(1.4)

VS = min
qi2,...,in

max
i1

∑
qi2,...,inψ(i1, . . . , in)

= max
pi1

min
i2,...,in

∑
pi1ψ(i1, . . . , in),

so that VS is also the maximum value forceable by player 1 by an optimal choice of mixed strategy,
whether against synchronous coalition, asynchronous coalition, or no coalition (independent play),
as this is computed by worst-case analysis as described in the final term of (1.4). By comparison,

(1.5) VA = min
pi2 ,...,pin

max
i1

∑
ΠN
j=2pijψ(i1, . . . , in).

Thus, the asynchronous coalition game has a value, in the classical sense [vN] that the optimal
values forceable by player 1 and by players 2-n agree, if and only if VS = VA. Meanwhile, the
synchronous coalition game, as a classical 2-player game, has value VS .

On the other hand, the asynchronous game is “fair”, in the sense that players 2-n do not gain
an advantage vs. player 1 by coalition, if and only if VA = VN = 0. Thus, the asynchronous game
is both fair and has a well-determined value if and only if

(1.6) VS = VA = VN = 0,

i.e., there is no advantage gained by coalition of any sort between players 2-n. This completely
determinate case is somewhat rare among multiplayer games, however, as typically [O, BLPWZ],

(1.7) VS < VN = 0,

a major practical/philosophical complication in the analysis of multiplayer games.
The above concepts have natural generalizations to continuous symmetric zero-sum games like

continuous Guts Poker [CCZ, BLPWZ], with the arguments ij of Ψ replaced by real numbers xj ,
and discrete probability distributions pj replaced by continuous ones.

1.1. Objectives. The discrepancy (1.7) between synchronous coalition and Nash equilibrium val-
ues is well-documented in the literature, and has been substantially discussed. Our purpose here,
building on observations of [BLPWZ], is to examine under what circumstances there is a discrep-
ancy

(1.8) VA < VN = 0

between asynchronous coalition and Nash equilibrium values, a question that seems to have been
not at all considered, but one that seems relevant and important to dynamics of multiplayer games.
For, VA = VN = 0 would imply that, in the absence of communication between players 2-n, as
one could imagine in various real-world scenarios, there is no advantage forceable by a player 2-n
coalition, yet, at the same time, player 1 cannot force a zero return against all possible plays.

In particular, we consider the key open problem posed in [BLPWZ] whether or not VA = VN = 0
for continuous Guts Poker. More generally, we investigate techniques for numerical approximation
of VA for arbitrary games, an interesting nonconvex optimization problem.
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1.2. Results. Our main analytical results are, first, to characterize all possible behaviors of syn-
chronous vs. asynchronous coalition values for 2× 2× 2 symmetric zero sum games, second, for a
simple 3 × 3 × 3 version of Rock-Paper-Scissors, to show that there can occur the new possibility
of a gap between the asynchronous value VA and both the Nash equilibrium value VN = 0 and
the synchronous value VS . Third, we treat in detail the example of continuous 3-player guts intro-
duced in [CCZ], obtaining an explicit analytical solution also of this at first sight quite complicated
infinite-dimensional case. Here, the main idea is, by using partial convexity properties, to reduce to
consideration of pure strategy solutions, converting the maximin and minimax problems defining
VS and VA to finite-dimensional calculus problems (5.16) and (5.15) analogous to (1.4) and (1.5),
which may with some effort be solved completely.

The latter appears of independent interest, identifying continuous guts as a rare instance of a
realistic 3-player game admitting complete solution. Specifically, we (i) answer in the affirmative,
by rigorous analysis, the key open problem posed in [BLPWZ] whether or not VA = VN = 0 for
continuous Guts Poker, and (ii) confirm rigorously the optimal synchronous coalition strategies and
values observed numerically in [BLPWZ]. Moreover, using our solution formulae, we are able to
track the minute evolution of optimal strategies for the recursive game as the number of rounds
increases, a delicate computation not easily accessible by numerical approximation.

In the remainder of the paper, we investigate numerical methods for approximating synchronous
and asynchronous values for general games, an interesting class of convex (VS) and nonconvex (VA)
optimization problems, using the exact solutions from (i) and (ii) above as benchmark problems,
then investigating convergence/computational cost on testbeds of larger randomly generated 2-
and 3-player symmetric games. Finally, having tested our methods, we numerically investigate
frequency distributions of the gaps between VS , VA, VN for random symmetric 3-player games.

1.3. Plan of the paper. In Sections 2-4, we present some basic discrete examples illustrating
the possible behaviors for low-dimensional games, and deriving values and optimal strategies for
synchronous vs. asynchronous games. In Section 5, we recall the description of continuous Guts
Poker in [CCZ], and discretizations thereof, and rigorously determine the value of the asynchronous
game to be zero, answering the open problem posed in [BLPWZ]. At the same time, we show how
to recover by rigorous analysis all features relevant to the synchronous coalition game, validating
numerical observations of [BLPWZ] and giving useful benchmarks for our numerical studies to
follow. In Section 6, we discuss methods for numerical approximation, using our exact solutions
as useful guidelines for comparison. In Section 7, we compare accuracy/computational effiency of
these various methods by experiments on randomly chosen two-player games of different sizes. In
Section 8, we use them to compile statistics for randomly generated three-player games. on gaps
|VS−VN |, |VS−VA|, |VA−VN , and relative gap θ := |VA−VN |/|VS−VN |. Finally, in Section 9, we
present discussion and open problems. In Appendix A, we provide for completeness a discussion of
maximin vs. critical points. In Appendix B, we study evolution of optimal strategies for recursive
games with the round of play; see in particular Section B.2 on continuous guts. In Appendix D,
we collect tables of results having to do with Section 7.

Acknowledgement: This work was carried out with the aid of open source packages Desmos,
Nashpy, and SciPy. L.D. and D.J. thank Indiana University, especially REU director Dylan
Thurston and administrative coordinator Mandie McCarty, for their hospitality during the REU
program in which this work was carried out. We also thank the UITS system at Indiana University
for the use of supercomputer cluster Carbonate. Code used in the investigations of this project is
publicly available and may be found at [Gi].
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2. Example 1: Odds and Evens

Simple illustrative examples are given by versions of the game of odds and evens. In the most
basic version, each of three player chooses “one” or “two” and the players simultaneously display
their choices. In the “odd man out” (OMO) version, if two players match and the other does not,
then the “odd” (nonmatching) player pays one value unit to each of the other two players. If all
match, then the game is a tie, with return to all players of zero. In the “odd man in” (OMI)
version, if two players match and the other does not, then the “even” (matching) players each pay
one unit to the odd player. If all match, as in (OMO), there is a tie and the value is zero. Both
versions are clearly symmetric, so have symmetric Nash equilibria returning value zero.

2.1. Values for (OMO). Evidently, the unique symmetric Nash equilibrium strategy is for each
player to choose one or two with equal probability 1/2, guaranteeing a return of VN = 0. On
the other hand, players 2-3 can choose strategy pairs (1, 1) and (2, 2) with equal probability to
guarantee a return of (−2)(1/2)+(0)(1/2) = −1 to player 1. Meanwhile, player 1 can choose 1 and
2 with equal probability to guarantee a return of ≥ −1 against synchronized coalition strategies.
Thus, VS = −1.

Finally, setting 0 ≤ y ≤ 1 to be the probability that player 2 chooses “one”, and 0 ≤ z ≤ 1 the
probablity that player 3 chooses “one”, we find that the expected return to player 1 upon choosing
“one” is

(2.1) (0)yz + (1)y(1− z) + (1)(1− y)z + (−2)(1− y)(1− z) = 3y + 3z − 4yz − 2

while the expected return on choosing “two” is

(2.2) (−2)yz + (1)y(1− z) + (1)(1− y)z + (0)(1− y)(1− z) = y + z − 4yz.

A quick computation shows that the second majorizes the first precisely when y+z ≤ 1. Minimizing
(2.2) on 0 ≤ y, z, y + z ≤ 1, we find a saddle at (y, z) = (1/4, 1/4), giving value 1/2− 1/4 = +1/4.
On the boundaries y = 0 or z = 0, the return is z or y, respectively, both ≥ 0. By symmetry,
we have the same behavior on y = 1 or z = 1. On the boundary y = 1 − z, the return is
1−4z(1−z) = (1−2z)2 ≥ 0 as well. By symmetry, the best that players 2-3 can force for y+z ≥ 1
is 0, too, showing that VA = 0.

The above analysis shows in passing that the (nonconvex) asynchronous problem has no local
minimizers other than the global minimizers recorded in Proposition 2.1. The interior minimizer
(y, z) = (1/2, 1/2), corresponding to a minimax at (x, y, z) = (1/2, 1/2, 1/2) of the expected return

(2.3) α(x, y, z) = −4yz + 2x(y + z − 1) + (y + z)

for 0 ≤ x ≤ 1 defined as the probability that player one chooses “one”, is a critical point of α, in
agreement with Proposition A.1, below; indeed, it is the unique critical point.

Summarizing, we have as follows.

Proposition 2.1. For 3-player odds and evens (OMO),

(2.4) VS = −1 < VA = VN = 0.

Moreover, the asynchronous minimax problem has global minimimizers (y, z) = (0, 0), (1, 1), (1/2, 1/2),
with no other local minima. Local saddle points however occur.

2.2. Values for (OMI). Again, the unique symmetric Nash equilibrium strategy is for each player
to choose one or two with equal probability 1/2, guaranteeing a return of VN = 0. But, now, ,
players 2-3 can guarantee a return of −1 to player 1 by choosing pure strategy pairs (1, 2) and
(2, 1) with arbitrary probabilities, including pure strategy pairs (1, 2) or (2, 1). As pure strategies
are also asynchronous strategies, this gives VA = VS = −1.
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Observing that the expected payoff analogous to (2.3) is now its negative, α(x, y, z) = −[−4yz+
2x(y+ z− 1) + (y+ z)], we find that there are no local minima for the asynchronous problem other
than the global minimizers (y, z) = (0, 1) and (y, z) = (1, 0) found on the boundary y + z = 1,
where α reduces to −(1− 2z)2 ≤ 0. Note that these minimaxes are not critical points of α, a fact
associated with their nonuniqueness; see Remark A.2.

Summarizing, we have as follows.

Proposition 2.2. For 3-player odds and evens (OMI),

(2.5) VS = VA = −1 < VN = 0.

Moreover, the asynchronous minimax problem has global minimizers (y, z) = (0, 1), (1, 0), with no
other local minima.

3. Example 2: general 2× 2× 2 games

More generally, payoffs for a general symmetric zero-sum 2× 2× 2 game, by symmetry, take the
form

(3.1)

(
P111 P112 P121 P122

P211 P212 P221 P22,2

)
=

(
0 α α −2β
−2α β β 0

)
,

where Pi1i2i3 denotes the payoff to player 1 if each player j chooses ij .
Case α = β = 0 corresponds to the trivial zero game, with VS = VA = VN = 0. If α or β is

nonzero, taking without loss of generality β 6= 0, by symmetry, we may rescale by |β| to obtain
either

(3.2)

(
P111 P112 P121 P122

P211 P212 P221 P22,2

)
=

(
0 α α −2
−2α 1 1 0

)
or

(3.3)

(
P111 P112 P121 P122

P211 P212 P221 P22,2

)
=

(
0 −α −α 2

2α −1 −1 0

)
.

Case α = β = 1 corresponds to (OMO), while α = β = −1 corresponds to (OMI). Thus, (3.2) may
be considered as a weighted payoff (OMO), where the “odd man” penalty depends on the strategy
chosen by the odd man, and (3.3), similarly, as a weighted version of (OMI).

3.1. Case α ≥ 0, (3.2): generalized (OMO). Evidently, columns 2 and 3 of the righthand side
of (3.2) are inferior strategies for player 2, and can be ignored in the synchronous coalition game.
This reduces the problem to a 2× 2 two-player game with payoff matrix

(3.4)

(
0 −2
−2α 0

)
,

for which a quick computation gives VS = − 2α
α+1 , with optimal player 1 strategy choosing 1 with

probability α
α+1 and 2 with probability 1

α+1 .
Turning to the computation of VA, set y and z to be the probabilities that player 2 and player

3 choose 1. Then, the associated payoffs may be computed as

(3.5) −2− 2(1 + α)yz + (2 + α)(y + z)

when player 1 chooses 1, and

(3.6) −2(1 + α)yz + y + z

when player 1 chooses 2. The second majorizes the first when

(3.7) y + z ≤ 2

1 + α
,
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the first majorizing the second on the complement. Minimizing (3.6) over (3.7), we find a single
critical saddle point at (y, z) = ( 1

2(1+α) ,
1

2(1+α)), which can therefore not be an interior minimum.
1

2(1+α) . On the boundaries y = 0 and z = 0, we have payoffs z ≥ 0 and y ≥ 0, respectively,

returning at least zero. On the boundary y + z = 2
1+α , the payoff may be calculated to be

−2(1 + α)y
( 2

1 + α
− y
)

+
2

1 + α
= 2
(√

1 + αy − 1√
1 + α

)2
,

hence greater than or equal to zero.
When α < 1, 2

1+α > 1, and there are two other boundaries y = 1 and z = 1, without loss of

generality (by symmetry) y = 1, 0 ≤ z ≤ 1−α
α+1 . On this boundary, we have payoff

−2(1 + α)z + 1 + z = 1− (1 + 2α)z,

which is minimized at z = 1−α
α+1 , with value

P∗ = 1− (1 + 2α)
1− α
1 + α

=
2α2

1 + α
≥ 0.

A similar computation on the complement of (3.7) gives the same result, hence VA ≡ 0 for all
α ≥ 0 for this class of games. (Indeed, the invariance y → 1− y, z → 1− z, α→ 1/α reduces this
to the previously considered case.)

3.2. Case α ≥ 0, (3.3): generalized (OMI). Here, columns 1, 3, and 4 of the righthand side of
(3.3) are majorized for player 2 by column 3, so may be ignored in the synchronous coalition game.
This gives a trivial 2× 1 reduced game with payoff matrix

(3.8)

(
−α
−1

)
,

evidently returning value VS = max{−1,−α} to player 1. As this corresponds to a pure, or
deterministic strategy pair (1, 2) for players 2-3, we have in this case VS = VA < VN = 0, similarly
as in the basic (OMI) case of Section 2.2.

3.3. Case α ≤ 0. In the case α ≤ 0, (3.2), player 1 can force a return of zero by the choice 2, hence
VS = VA = VN = 0. In case α ≤ 0, (3.3), player 1 can force a return of zero by the choice 1, hence
again VS = VA = VN = 0.

3.4. Summary. Collecting the above conclusions, we have the following results categorizing pos-
sible forms and behavior for general symmetric 2× 2× 2 zero-sum games.

Theorem 3.1. Any symmetric 2× 2× 2 zero sum game may be reduced by rescaling/symmetry to
either the trivial zero game, or a game of form (3.2) or (3.3). In the first case, VS = VA = VN = 0,
and in the second VS < VA = VN = 0. In the third case, VS = VA < VN = 0 for α > 0 and
VS < VA = VN = 0 for α ≤ 0.

4. Example 3: three-player Rock-paper-scissors

We next examine two related 3×3×3 odds and evens games discussed in [BLPWZ, Appendix D],
which could be considered as three-player generalizations of Rock-Paper-Scissors. These illustrate
that moving from 2× 2× 2 to 3× 3× 3 games opens up the final new possibility for behavior of

VS < VA < VN = 0.

The descriptions and analysis below are paraphrased from [BLPWZ, Appendix D], except for the
discussion of local minimizers which is new.

7



4.1. Odd man in. In this version, each player chooses a value 1, 2, or 3 for ”Rock”, ”Paper”, or
”Scissors”. If all choices are the same, or all are different, there is no payoff. If two players choose
a common number, however, and the third player a different one, then the first two each pay a
value of 1 to the third, i.e., the first two receive payoff -1 and the third +2. Clearly, the strategy
distribution (1/3, 1/3, 1/3) for player 1 gives average return of +2/3 if the other two players play
the same number, and −2/3 if they play different numbers. Thus, player 1 can force ≥ −2/3. On
the other hand, if players 2-3 choose with equal probability between pairs of choices (1, 2), (1, 3),
and (2, 3), then the average payoff to player 1 is independent of player 1’s choice of strategy, and
equal to (2/3) × (−1) + (1/3) × (0) = −2/3. Thus, players 2-3 can force a return of ≤ −2/3 to
player 1 by synchronous coalition play, and the value of the player 1 vs. players 2-3 game is −2/3.

On the other hand, let y := (y1, y2, y2) and z := (z1, z2, z3) denote probability distributions
describing mixed strategies for players 2 and 3. Then, it is readily computed [BLPWZ] that the
payoff to player 1 is

(4.1)

Ψ1(y, z) := 2y · z − (y1 + z1) for player 1 choice 1,

Ψ2(y, z) := 2y · z − (y2 + z2) for player 1 choice 2,

Ψ3(y, z) := 2y · z − (y3 + z3) for player 1 choice 3.

The value Ψ(y, z) := maxj Ψj(y, z) is thus the minimum value forceable by choice (y, z), and

V = min
y,z

Ψ(y, z)

is the minimum value forceable by players 2-3 via asynchronous play, and by continuity of Ψ is
achieved for some feasible pair of strategies (y∗, z∗).

Noting that the average of Ψj is

2y · z − (1/3)
∑
j

(yj + zj) = 2y · z − (2/3) ≥ −2/3,

we have that Ψ(y, z) ≥ −2/3, with equality if and only if simultaneously y ·z = 0 and (yj+zj) = 2/3
for all j. But, these together imply that one of each pair yj , zj has value zero and the other value
2/3, which is impossible to reconcile with

∑
j yj =

∑
j zj = 1. Thus, evaluating at (y, z) = (y∗, z∗),

we obtain V = Ψ(y∗, z∗) > −2/3, verifying that there is indeed a gap between this value and the
value −2/3 forceable by synchronous coalition play. Indeed, the optimum asynchronous strategy
can be shown to be y∗ = (1, 0, 0), z∗ = (0, 1/2, 1/2), and symmetric permutations thereof, forcing
an expected payoff to player 1 of ≤ −1/2: thus,

−2/3 = VS < VA = −1/2 < VN = 0,

leaving a gap of −1/2− (−2/3) = 1/6 between VS and VA and a gap of 1/2 between VA and VN .
As regards local minima for the asynchronous game, we may first check readily that the unique

critical points in each of the three regions above are y = (4/6, 1/6, 1/6), z = (4/6, 1/6, 1/6) for
Ψ1, and symmetric rearrangements for Ψ2 and Ψ3. But, these are outside the ranges of validity of
the Ψj ; for instance, Ψ1 is valid only where y1 + z1 minimizes yj + zj . Let us check next on the
boundary y1 + z1 = y2 + z2 = h, and symmetric rearrangements. Here, we find that the unique
critical points are y = z = (5/12, 5/12, 2/12), and symmetric rearrangements. Again, this is out of
the range of validity.

Checking on the triple interior boundary y1 + z1 = y2 + z2 = y3 + z3 = 2/3, we may set
z1 = 2/3− y1, z2 = 2/3− y2, and minimize the resulting function

(4.2) ψ̌(y1, y2) := 2
(
y1(2/3− y1) + y2(2/3− y2)

)
− 2/3
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on the domain

(4.3) 1/3 ≤ y1 + y2 ≤ 1, 0 ≤ y1, y2 ≤ 2/3.

We find that the unique interior critical point is the Nash equilibrium y = z = (1/3, 1/3, 1/3),
which is (automatically) in the range of validity. However, this is a maximum and not a minimum
for the problem (4.2), since 2w(2/3 − w) is maximized at w = 1/3. The minima with respect to
this restricted problem thus occur at the boundary points

(y1, y2) = (0, 1/3), (1/3, 0), (2/3, 0)(2/3, 1/3), (1/3, 2/3), (0, 2/3),

giving values Ψ(y, z) = −4/9 > −1/2 = VA. Thus, they are at best local and not global minimizers,
and are the only candidates for local minimizers lying on the triple interior boundary.

Further analysis yields that they are indeed local minimizers with respect to general admissible
perturbations as well. For, taking without loss of generality y = (0, 1/3, 2/3), z = (2/3, 1/3, 0), and
assuming by symmetry that the perturbed y, z feature either a) y1 + z1 is minimum, or b) y2 + z2
is minimum, let us consider each case in turn. In case a), we must have

y = (θ, 1/3 + γ + β + δ − θ, 2/3− γ − β − δ),
z = (2/3− θ − β, 1/3 + θ + β − γ, γ),

with θ, γ, δ ≥ 0 and β > 0, giving

ψ(y, z) = 2
(
θ(2/3−θ−β) + (1/3 +γ+β+ δ−θ)(1/3 +θ+β−γ) + (2/3−γ−β− δ)γ

)
− (2/3−β),

giving first variation

(2/3)(2θ + γ + β + δ − θ + θ + β − γ + 2γ)− β = (2/3)(2θ + δ + 2γ) + β/3 > 0.

Similarly, in case b), we must have

y = (γ, 1/3 + a, 2/3− a− γ),

z = (2/3− γ − θ + δ, 1/3− a− θ, γ + 2θ − δ + a),

with β, γ, δ ≥ 0, γ + 2θ − δ + a ≥ 0, and θ > 0, giving first variation

(2/3)
(

2γ + a− a− θ + 2(γ + 2θ − δ + a)
)

+ θ ≥ θ/3 > 0.

Taken together, this verifies that y = (0, 1/3, 2/3), z = (2/3, 1/2, 0) is a (nonsmooth) local mini-
mizer, and similarly for its symmetric rearrangements.

Finally, a tedious case-by-case analysis, omitted, shows that there are no local minimizers on the
boundary of the domain y1, y2, z1, z2 ≥ 0, y1 + y2, z1 + z2 ≤ 1, other than the global minimizers
(y1, y2) = (1, 0), z = (0, 1/2); (y1, y2) = (0, 1), z = (1/2, 0); and (y1, y2) = (0, 0), z = (1/2, 1/2),
together with the local minimizers just determined. This accounts for all global and local mini-
mizers. Finally, returning to the Nash equilibrium, we note that by definition it is minimum with
respect to perturbations involving one player at a time, so is neither a local minimum nor a local
maximum, but a nonsmooth saddle.

We record this as follows.

Proposition 4.1. For 3-player Rock-Paper-Scissors (OMI),

(4.4) −2/3 = VS < VA = −1/2 < VN = 0.

Asynchronous global minima are achieved at y = (1, 0, 0), z = (0, 1/2, 1/2); y = (0, 1, 0), z =
(1/2, 0, 1/2); and y = (0, 0, 1), z = (1/2, 1/2, 0), while asynchronous local minima are achieved
at y = (0, 1/3, 2/3), z = (2/3, 1/3, 0); y = (2/3, 1/3, 0), z = (0, 1/3, 2/3); y = (1/3, 0, 2/3), z =
(1/3, 2/3, 0); y = (1/3, 2/3, 0), z = (1/3, 0, 2/3); y = (0, 2/3, 1/3), z = (2/3, 0, 1/3); and y =
(0, 1/3, 2/3), z = (2/3, 1/3, 0). The Nash equilibrium y = z = (1/3, 1/3, 1/3), meanwhile, is a
nonsmooth saddle.
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Remark 4.2. The appearance of local (nonglobal) asynchronous minimizers in Proposition 4.4 is
significant as a major difference from the convex synchronous minimization problem, present already
in this simple setting. Certainly it complicates numerical estimation of minima discussed in Section
6 by descent or other iterative methods, as randomly chosen starting data may lie in the basin of
attraction of a local but not global minimizer, thus returning a local and not the correct global
minimum as numerical approximation.

Remark 4.3. In more complicated situations, the search for nonsmooth minimizers would be more
systematically done by checking Karush-Kuhn-Tucker conditions [BMS].

4.2. Odd man out. Next, consider the same game, but with payoff function multiplied by −1:
that is, the “reverse” game, in which the odd player is penalized instead of rewarded. Here,
an optimum synchronized strategy is a blend of pure strategy pairs 1-1, 2-2, 3-3, each chosen
with probability 1/3, yielding value (2/3)(−2) = −4/3. The symmetric Nash equilibrium may be
computed [BLPWZ] to be x = y = z = (1/3, 1/3, 1/3), returning payoff zero to all players.

However, the optimum value forceable by asynchronous coalition of players 2-3 is now Ṽ =
miny,z Ψ̃(y, z), where

Ψ̃(y, z) := min−ψj(y, z) = −2y · z + max
j

(yj + zj),

The effect of changing the sign of the payoff function in going from OMI to OMO, is to take Ψj

to −Ψj , but changing the domains of validity from (yj +zj) minimal (OMI) to to (yj +zj) maximal
(OMO). This has the effect that the disallowed critical points y = (4/6, 1/6, 1/6), z = (4/6, 1/6, 1/6)
for Ψ1, and symmetric versions for Ψ2 and Ψ3, are now allowed, so that valid interior critical points
do occur. On the other hand, the associated Hessian −2y · z is indefinite, hence they are not local
minimizers, but saddles.

Similarly, on the interior boundary y1 + z1 = y2 + z2 =: h, we find that the formerly disallowed
critical point y = z = (5/12, 5/12) (and symmetric permutations thereof) is now allowed, hence
must be checked further. However, considering the restricted class of competitors y1 = y2 = z1 = z2
gives payoff function ψ(y2) = −12y22 + 10y2 − 2, which satisfies ψ′(y2) = −24y2 + 10 vanishing at
y2 = 5/12, but ψ′′(y2) = −24 < 0 showing that it is a maximum and not a minimum. Hence, this too
can be discarded, corresponding to a nonsmooth saddle. The endpoints h = 0 and h = 1, however,
give (y1, y2) = (z1, z2) = (0, 0) and (y1) = (z1) = (0), respectively, reducing the problem to a trivial
one-strategy and the two-strategy Odds-Evens case, each of which feature VA = 0. Hence, these
furnish in the first case the minimizer y = z = (0, 0, 1) and in the second the previously determined
minimizers (y, z) = (1, 0, 0), (y, z) = (0, 1, 0), and y = z = (1/2, 1/2, 0) of the two-strategy case,
along with symmetric rearrangements.

Finally, the interior double boundary y1 + z1 = y2 + z2 = y3 + z3 yields as before the Nash
equilibrium y = z = (1/3, 1/3, 1/3), or global minimimum, as the unique interior minimizer. On
the domain boundaries y1 = 0, y2 = 0, y1 + y2 = 1, z1 = 0, z1 = 1, z1 + z2 = 1, meanwhile,
there appear the already noted global minimizers y = z = (1, 0, 0), and symmetric rearrangements
thereof, but no other local minimizers. All of the above-described minima have value zero.

Thus, in the reverse (OMO) game,

−4/3 = VS < VA = VN = 0.

We record this as follows.1

Proposition 4.4. For 3-player Rock-Paper-Scissors (OMO),

(4.5) −4/3 = VS < VA = VN = 0.

1This repairs an error in [BLPWZ], both in the proof, and the resulting omission of several minimizers.
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Asynchronous global minima are achieved at y = (1/3, 1/3, 1/3), z = (1/3, 1/3, 1/3); y = (1, 0, 0), z =
(1, 0, 0); y = (0, 1, 0), z = (0, 1, 0); and y = (0, 0, 1), z = (0, 0, 1); and y = (1/2, 1/2, 0), z =
(1/2, 1/2, 0), y = (0, 1/2, 1/2), z = (0, 1/2, 1/2), and y = (1/2, 0, 1/2), z = (1/2, 0, 1/2), with no
other local minima.

Remark 4.5. In all of these examples, a more straightforward way to compute the synchronous
value Vs is, using the fundamental theorem of games, to evaluate the maximin

maxx
∑

i minjk xiPijk =: maxx Φ(x), where Φ(x) :=
∑

i minjk xiPijk.

For example, in OMI, it is readily seen that Φ(x) = minj(xj)− 1, so that minx Φ = −2/3, achieved
at x = (1/3, 1/3, 1/3) Similarly, in OMO, it is found that Φ(x) = 2(minj(xj)−1), so that minx Φ =
−4/3, achieved again at x = (1/3, 1/3, 1/3).

5. Example 4: continuous Guts Poker and discretizations

Finally, we come to our main example, the continuous version of Guts Poker introduced in
[CCZ], which can be played with any number of players n ≥ 2. In this game, players make an
initial one unit ante into a pot, and are dealt continuous “hands” consisting of I.I.D. random
variable uniformly distributed on [0, 1]. On the count of three players either “hold” or “drop” their
hands, with no further betting or cards dealt. If only one player holds, they win the pot and the
round is terminated. If no players hold, the game is redealt, starting over. If m ≥ 2 players hold,
the player with highest “hand” wins the pot and the remaining m − 1 players must match it, so
that the stakes increase by factor m − 1. A new hand is then dealt to all players and the game
played in the same way but with now higher stakes, this process continuing until play is terminated
by a single player holding.

As described in [CCZ, BLPWZ], the study of this variable-stakes “generalized recursive game”2

can be reduced to the study of the “single-shot” game consisting of the outome of a single round.
A “pure” strategy for player i for the one-shot game, indexed by p∗i ∈ [0, 1], is the threshold type
strategy to hold for pi > p∗i and otherwise drop. A “mixed,” or “blended” strategy is a random
mixture of pure strategies with a given probability weight. The outcome for the single-shot game
may be encoded by expected instantaneous return α(p1, . . . , pn) in that round for a selection of
pure strategies, together with expected stakes β(p1, . . . , pn) for ensuing rounds.

It was shown in [CCZ, BLPWZ] that players 2-n working in synchronous coalition may force
a negative return for player 1 for the full recursive game if and only if they may force a negative
instantaneous return for the one-shot game with payoff function α(. . . ). Hence, we may focus in
this discussion on the one-shot game, a classical continuous n-player game with no recursive aspect.
It was shown analytically and numerically in [CCZ, BLPWZ] that VS < 0 for this game. Here,
we investigate the remaining open question posed there whether the corresponding asynchronous
coalition value VA is equal to VS < 0 or VN = 0, or lies in the open interval (VS , 0), showing for the
three-player version that in vact VA = VN = 0.

5.1. Three-player payoff function for one-shot continuous Guts. We start by recalling from
[CCZ], without repeating the derivation, the payoff function for one-shot continuous Guts.

2See [E, Sh3] for related notions of recursive and stochastic games.
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Proposition 5.1 ([CCZ]). The one-shot payoff function for 3-player continuous Guts is

(5.1) α(p∗1, p
∗
2, p
∗
3) =



2p∗1 − p∗2 − p∗3 + (p∗3)
3 + 3(p∗2)

2p∗3 − 4p∗1p
∗
2p
∗
3, p∗1 < p∗2 < p∗3,

2p∗1 − p∗3 − p∗2 + (p∗2)
3 + 3(p∗3)

2p∗2 − 4p∗1p
∗
2p
∗
3, p∗1 < p∗3 < p∗2,

2p∗1 − p∗2 − p∗3 + (p∗3)
3 − 3(p∗1)

2p∗3 + 2p∗1p
∗
2p
∗
3, p∗2 < p∗1 < p∗3

2p∗1 − p∗2 − p∗3 + (p∗2)
3 − 3(p∗1)

2p∗2 + 2p∗1p
∗
2p
∗
3, p∗3 < p∗1 < p∗2,

2p∗1 − p∗2 − p∗3 − 2(p∗1)
3 + 2p∗1p

∗
2p
∗
3, p∗2 < p∗3 < p∗1,

2p∗1 − p∗2 − p∗3 − 2(p∗1)
3 + 2p∗1p

∗
2p
∗
3, p∗3 < p∗2 < p∗1.

We next derive some basic properties we will need in the analysis.

Lemma 5.2. The payoff function α of (5.1) is C1 on its entire domain p∗ ∈ [0, 1]3. It is concave
in p∗1 and individually convex in p∗2 and p∗3, but not jointly convex in (p∗2, p

∗
3).

Proof. By symmetry, we may take without loss of generality p∗2 ≤ p∗3. Computing partial derivatives
in the resulting cases, we have
(5.2)

∂p∗1,p∗2,p∗3α =


(
2− 4p∗2p

∗
3,−1 + 6p∗2p

∗
3 − 4p∗1p

∗
3,−1 + 3(p∗3)

2 + 3(p∗2)
2 − 4p∗1p

∗
2

)
p∗1 ≤ p∗2 ≤ p∗3,(

2− 6p∗1p
∗
3 + 2p∗2p

∗
3,−1 + 2p∗1p

∗
3,−1 + 3(p∗3)

2 − 3(p∗1)
2 + 2p∗1p

∗
2

)
p∗2 < p∗1 < p∗3,(

2− 6(p∗1)
2 + 2p∗2p

∗
3,−1 + 2p∗1p

∗
3,−1 + 2p∗1p

∗
2

)
p∗2 < p∗3 < p∗1

and

(5.3) (∂2p∗1α, ∂
2
p∗2
α, ∂2p∗3α) =


(
0, 6p∗3, 6p

∗
3

)
p∗1 ≤ p∗2 ≤ p∗3,(

− 6p∗3, 0, 6p
∗
3

)
p∗2 < p∗1 < p∗3,(

− 12p∗1, 0, 0
)

p∗2 < p∗3 < p∗1.

From (5.1)-(5.2), C1 regularity then follows by inspection, comparing values and partial deriva-
tives at boundaries p∗1 = p∗2 and p∗1 = p∗3 of the different domains of definition. Concavity/convexity
with respect to individual variables p∗j then follow by concavity/convexity on separate domains of

definition, which follows by inspection by (5.3) together together with 0 ≤ p∗j ≤ 1. It was shown

by direct computation in [CCZ], on the other hand, that α is not jointly convex in (p∗2, p
∗
3). �

As shown in [CCZ, BLPWZ], the unique symmetric Nash equilibrium for α is

(5.4) (p∗1, p
∗
2, p
∗
3) = (1/

√
2, 1/
√

2, 1/
√

2),

with value VN = 0, but the synchronous coalition value is VS < 0, giving a winning outcome for
players 2-3 for mixed synchronized strategies. Our next result shows that there are no winning
pure strategies for players 2-3, a first step in showing that VA = VN = 0. (If such strategies did
exist, we would have instead VA < VN , as pure strategies are a case of asynchronous ones.)

Lemma 5.3. The payoff function α of (5.1), considered as a game between player 1 and a coalition
of players 2-3 has no winning pure strategy solution for players 2-n, that is,

(5.5) min
p∗2,p

∗
3

max
p∗1

α(p∗1, p
∗
2, p
∗
3) = 0.

Moreover, maxp1 α(p1, p
∗
2, p
∗
3) has a single local and global minimum, at p∗2 = p∗3 = 1/

√
2.

Proof. 1. Without loss of generality (by symmetry) take p∗2 ≤ p∗3. Then, easy calculations show
that α(p∗2, p

∗
2, p
∗
3) ≥ 0 whenever

(5.6) (p∗2)
2 + p∗2p

∗
3 ≥ 1
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and α(p∗3, p
∗
2, p
∗
3) ≥ 0 whenever

(5.7) (p∗3)
2 ≤ 1/2.

It remains to show that α(p∗1, p
∗
2, p
∗
3) ≥ 0 for some p∗1 when (5.6)-(5.7) both fail, that is, when

(5.8) (p∗2)
2 + p∗2p

∗
3 ≤ 1

and

(5.9) (p∗3)
2 ≥ 1/2,

to which case we now restrict.
Computing ∂p∗1 for p∗2 ≤ p∗1 ≤ p∗3, we have

(5.10) ∂∂p∗1α(p∗1, p
∗
2, p
∗
3) = 2− 6p∗1p

∗
3 + 2p∗2p

∗
3,

hence

∂p∗1α(p∗2, p
∗
2, p
∗
3) = 2(1− 2p∗2p

∗
3) > 0

or else
α = −p∗2 − p∗3 + (p∗3)

3 + 3(p∗2)
2p∗3

= p∗2(2p
∗
2p
∗
3 − 1 + p∗3((p

∗
3)

2 + (p∗2)
2 − 1)

≥ p∗2(2p∗2p∗3 − 1) + p∗3(2p
∗
2(p
∗
3 − 1) ≥ 0.

Likewise,

∂p∗1α(p∗3, p
∗
2, p
∗
3) = 2− 6(p∗3)

2 + 2p∗2p
∗
3 ≤ 3− 6(p∗3)

2 < 0

by (5.9). Thus, in the remaining case p2p3 < 1/2 there is a maximum with respect to p∗1 in (p∗2, p
∗
3),

at which ∂p∗1α = 0.
Setting the derivative equal to zero in (5.10), we obtain after rearrangement the maximal argu-

ment

(5.11) p∗1 = (1/3)(1/p∗3 + p∗2),

or, equivalently,

(5.12) 3p∗1p
∗
3 = 1 + p∗2p

∗
3.

Using (5.12) to simplify (5.1)(iii), we find at this maximal point that

(5.13)

α(p∗1, p
∗
2, p
∗
3) = 2p∗1 − p∗2 − p∗3 + (p∗3)

3 − 3(p∗1)
2p∗3 + 2p∗1p

∗
2p
∗
3

= 2p∗1 − p∗2 − p∗3 + (p∗3)
3 − p∗1(1 + p∗2p

∗
3) + (2/3)p∗2(1 + p∗2p

∗
3)

= p∗1 − (2/3)p∗2 − p∗3 + (p∗3)
3 + (1/3)(p∗2)

2p∗3.

Thus, multiplying by 3p∗3 and applying (5.12) again, we have

(5.14)

3p∗3α(p∗1, p
∗
2, p
∗
3) = 3p∗1p

∗
3 − 2p∗2p

∗
3 + 3(p∗3)

4 + (p∗2)
2(p∗3)

2

= (1 + p∗2p
∗
3)− 2p∗2p

∗
3 + 3(p∗3)

4 + (p∗2)
2(p∗3)

2

= (1− p∗2p∗3) + 3(p∗3)
4 + (p∗2)

2(p∗3)
2,

whence, using (5.9), 3p∗3α(p∗1, p
∗
2, p
∗
3) ≥ (p∗2)

2 + 3(p∗3)
4 + (p∗2)

2(p∗3)
2 ≥ 0.

Combining, we have minp∗2,p∗3 maxp∗1 α(p∗1, p
∗
2, p
∗
3) ≥ 0. But, by (5.4), the Nash equilibrium strat-

egy p∗2 = p∗3 = 1/
√

2 guarantees a return to player 1 of ≤ 0, whence we may conclude (5.5).
2. (Unique local minimum) As α is C1 on its domain [0, 1]3, and αp1p1 < 0 unless p∗1 ≤ p∗2, p∗3, im-

plying uniqueness of argminα(·, p∗2, p∗3), any interior local minimum in (p∗2, p
∗
3) of maxp∗1 α(p∗1, p

∗
2, p
∗
3)
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by Proposition A.1 must be a critical (saddle) point, except possibly in the case p∗1 ≤ p∗2, p
∗
3, in

which 0 = αp1 = 2− 4p∗2p
∗
3 implies p∗2p

∗
3 = 1/2, and

α = −p∗2 − p∗3 + (p∗3)
3 + 3(p∗2)

2p∗3 = 1/4p∗3 − p∗3 + (p∗3)
3.

Differentiating along the path p∗2p
∗
3 = 1/2, parametrized by p∗3, we thus have

dα/dp∗3 = −1/4(p∗3)
2 − 1 + 3(p∗3)

2

= −(p∗2)
2 − 1 + 3/4(p∗2)

2,

which, by (p∗2)
2 ≤ 1/2 is greater than or equal to −1/2−1+3/2 = 0, with equality only if p2 = 1/

√
2.

Thus, the only possible local minimum is at p∗2 = p∗3 = 1/
√

2, which is the global minimum.
As remaining possible local minima are critical points, we need thus to check separately only for

interior critical points and for local minima on the boundaries p∗j = 0, 1.

2(a). (Unique interior critical point) From (5.2), we readily find that the unique critical point
occurs at p∗1 = p∗2 = p∗3 = 1/

√
2. We examine each of cases (5.2)(i)-(iii) in turn.

Case (5.2)(i) (p∗1 ≤ p∗2 ≤ p∗3) Setting ∂p∗1α = 0, we have 1 = 2p∗2p
∗
3. From ∂p∗2α = 0, we then have

0 = −1 + 6p∗2p
∗
3− 4p∗1p

∗
3 = 2− 4p∗1p

∗
3, or 1 = 2p∗1p

∗
3. Combining gives p∗3 = p∗2, from which we obtain

p∗1 = p∗2 = p∗3 by p∗1 ≤ p∗2 ≤ p∗3, and thus p∗j = 1/
√

2 for j = 1, . . . , 3.

Case (5.2)(ii) (p∗2 ≤ p∗1 ≤ p∗3) From ∂p∗2α = 0 we obtain 1 = 2p∗1p
∗
3, while from ∂p∗1α = 0 we

obtain 0 = 2 − 6p∗1p
∗
3 + 2p∗2p

∗
3 = −1 + 2p∗2p

∗
3, or 2p∗2p

∗
3 = 1. Combining, we have p∗1 = p∗2, and thus

p∗1 = p∗2 = p∗3, giving again p∗j = 1/
√

2.

Case (5.2)(iii) (p∗2 ≤ p∗3 ≤ p∗1) From ∂p∗3α = 0 we obtain 1 = 2p∗1p
∗
2, while from ∂p∗2α = 0 we obtain

2p∗1p
∗
3 = 1. Combining, we have p∗2 = p∗3. From ∂p∗1α = 0, finally, we obtain 0 = 2−6(p∗1)

2 +2p∗2p
∗
3 =

3− 6(p∗1)
2, giving p∗1 = 1/

√
2, and thus p∗2 = p∗3 = 1/

√
2.

2(b). (No boundary local minima) It remains to check the various boundaries p∗j = 0, 1 and verify

that no local minimum in (p∗2, p
∗
3) can occur there. We omit these straightforward computations.

Case p∗1 = 0, (5.2)(i) (p∗1 ≤ p∗2 ≤ p∗3) For a local minimum, there must hold 0 ≥ ∂p∗1α = 2− p∗2p∗3
and also 0 = ∂p∗2α = −1 + 6p∗2p

∗
3 − 4p∗1p

∗
3 = −1 + 6p∗2p

∗
3, or p∗2p

∗
3 = 1/6, a contradiction.

Case p∗1 = 1, (5.2)(iii) (p∗2 ≤ p∗3 ≤ p∗1) For a local minimum, there must hold 0 ≤ ∂p∗1α = 2−p∗2p∗3
and also 0 = ∂p∗2α = ∂p∗3α. The latter two equalities give p∗2 = p∗3, hence the first inequality becomes

0 ≤ −4 + 2(p∗2)
2 ≤ −2, a contradiction.

Case p∗2 = 0, p∗1 6= 0, (5.2)(ii) (p∗2 ≤ p∗1 ≤ p∗3) For a local minimum, 0 ≥ ∂p∗2α = 2 − p∗1p∗3 and
0 = ∂p∗1α = 1− 6p∗1p

∗
3, or p∗1p

∗
3 = 1/6, a contradiction.

Case p∗2 = 0, p∗1 6= 0, (5.2)(iii) (p∗2 ≤ p∗3 ≤ p∗1) For a local minimum, 0 ≥ ∂p∗2α = 2 − p∗1p∗3 and
0 = ∂p∗3α = 1− 2p∗1p

∗
2 = 1, a contradiction.

Case p∗3 = 1, p∗1 6= 1, (5.2)(i) (p∗1 ≤ p∗2 ≤ p∗3) For a local minimum, 0 ≤ ∂p∗3α = 2 − p∗1p∗3 and

0 = ∂p∗1α = ∂p∗2α. But, the last two already give p∗j = 1/
√

2 for all j = 1, . . . , 3, a contradiction.

Case p∗3 = 1, p∗1 6= 1, (5.2)(ii) (p∗2 ≤ p∗1 ≤ p∗3) Again, the requirements 0 = ∂p∗1α = ∂p∗2α give

p∗j = 1/
√

2 for all j = 1, . . . , 3, a contradiction.
Combining the results of the above cases, we find that there exist no local minima with respect

to p∗2, p
∗
3 on the boundary, completing the proof. �

Remark 5.4. The second half of the proof of Lemma 5.3 gives in passing an alternative proof that
(1/
√

2, 1/
√

2, 1/
√

2) is a (unique) symmetric Nash equilibrium, as a Nash equilibrium is necessarily
a critical point of α.

Remark 5.5. For the n-player game, the symmetric Nash equilibrium is p∗j = (1/21/(n−1)). This

may be recognized as the player 1 value p∗1 for which there is 1/2 probability that one of players
2-n have a higher hand.
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5.2. Special properties of continuous games. We consider now the general case of an n-player
continuous game, with payoff matrix Ψ(x1, . . . , xn), xj ∈ [0, 1]. A mixed strategy for such a game
for player j consists of a probability distribution µj on [0, 1]. A mixed strategy for a synchronous
coalition of players 2-n consists of a probability distribution ν on [0, 1]n−1, a mixed strategy for an
asynchronous coalition a product distribution ν(x2, . . . , xn) = µ2(x2) · · ·µn(xn).

The continuous formulation imposes additional structure on Ψ as compared to the payoff matrix
P of the discrete case, allowing us to say more in certain special cases. The first is somewhat
hypothetical, as we do not have an interesting example of this case.

Proposition 5.6. If Ψ is concave in x1 and convex in (x2, . . . , xn), then there exist pure strategies
x∗1 for player 1 and x∗2, . . . , x

∗
n for players 2-n forcing the optimal value VS, whence VA = VS.

If also Ψ is symmetric, then there is an optimal repeated pure strategy for players 2-n, whence
VS = VA = VN = 0.

Proof. The first assertion is the classical minimax theorem of von Neumann [vN]. The second is
evident from the fact that pure strategies are a subset of strategies of product type. The third
follows from the fact, by symmetry, that every permutation of an optimal pure strategy for players
2-n is also optimal, whence, so also is the mixed synchronous strategy consisting of the average
of these permutations. But, by Jensen’s inequality, using convexity in x2, . . . , xn, we have that
the average of the payoffs is greater than or equal the payoff of the average, and so the averaged
strategy must be optimal as well. But, this is a repeated pure strategy, giving the result. �

The second is of more interest, applying directly to continuous Guts Poker.

Proposition 5.7. If Ψ is individually convex in each of x2, . . . , xn, then there exist pure strategies
x∗2, . . . , x

∗
n for players 2-n forcing the optimal value VA, i.e.,

(5.15) VA = min
x∗2,...,x

∗
n

max
x∗1

Ψ(x∗1, x
∗
2, . . . , x

∗
n).

Proof. Applying Jensen’s inequality in turn in each of the coordinates x2, . . . , xn, we find that any
mixed product strategy for players 2-n is majorized by a pure strategy, given by the expectations
of each xj under the associated probability distributions, whence the latter gives an optimal pure
strategy for the asynchronous coalition game. The conclusion (5.15) then follows by the fundamental
theorem of two-player games, considering the coalition of players 2-n as a single player. �

Proposition 5.7 reduces the problem of finding VA from an infinite-dimensional to a finite-
dimensional optimization problem, the latter treatable in principle by standard Calculus.

5.3. Conclusion. Combining the results of the previous two subsections, we have the following
definitive result, answering in the affirmative the main open problem posed in [BLPWZ].

Corollary 5.8. For 3-player continuous Guts Poker, VS < VA = VS = 0.

Proof. This is an immediate consequence of Proposition 5.7 and Lemmas 5.2 and 5.3. �

Remark 5.9. We conjecture that the result of Corollary 5.8 holds true for the n-player game as well.
However, we have not carried out the necessary analysis of the n-player payoff function needed to
conclude. This would be a very interesting problem for further analytical investigation.

5.4. The synchronous coalition revisited. Remarkably, returning to the synchronous coalition
problem, we may obtain an explicit value for VS by the same set of techniques. Analogous to
Proposition 5.7, we have the following complementary result applying to synchronous coalitions.
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Proposition 5.10. Let Ψ as in Proposition 5.7 denote a continuous payoff function. If Ψ is
concave in x1, then there exists an optimal pure strategy x∗1 for player 1 forcing the optimal value
VS, i.e.,

(5.16) VS = max
x∗1

min
x∗2,...,x

∗
n

Ψ(x∗1, x
∗
2, . . . , x

∗
n).

Proof. The first assertion follows by Jensen’s inequality as in the proof of Proposition 5.6, whence
the second follows by the fundamental theorem of two-player games (as usual, considering the
coalition of players 2-n as a single player opposing player 1). �

As Proposition 5.7 did for VA, Proposition 5.10 reduces the infinite-dimensional problem of
finding VS to a Calculus problem in an n-dimensional domain. We recall from [CCZ, Prop. 6.8]
and surrounding discussion the following result.

Proposition 5.11. For continuous 3-player Guts, the best response function is given by

(5.17) R(p∗1) := min
p∗2,p

∗
3

α(p∗1, p
∗
2, p
∗
3) = min{αa(p∗1), αb(p∗1)},

with respective values

(5.18)
αa = − 1

27

(
(4(p∗1)

2 + 6)
3
2 + 8(p∗1)

3 − 36p∗1

)
,

αb = − 2

27

(
(9(p∗1)

2 + 3)
3
2 − 27p∗1

)
,

achieved at (p∗2, p
∗
3) = (pa3, p

a
3) = ((

√
4(p∗1)

2 + 6 − 2p∗1)
−1, (

√
4(p∗1)

2 + 6 − 2p∗1)
−1) and (p∗2, p

∗
3) =

(0, pb3) =
(

0,

√
3(p∗1)

2+1
3

)
. Here α1 < 0 except at p∗1 = 1/

√
2, where it is zero, and αb(1/

√
2) < 0.

Corollary 5.12. For continuous guts poker the one-shot game has value

(5.19) VS = max
p∗1

min{αa(p∗1), αb(p∗1)} < 0.

Proof. Noting for continuous guts poker that α is concave with respect to x1, we have by Proposition
5.10 that

(5.20) VS = max
p∗1

min
p∗2,p

∗
3

α(p∗1, p
∗
2, p
∗
3) = max

p∗1
R(p∗1),

from which the result then follows by (5.17). �

Remark 5.13. The advantage of (5.19) over (5.20) is illustrated by Figure 1, below, in which (5.20)
is used directly, treating the inner loop as a nonconvex numerical minimization problem. As we see,
the presence of nearby local minima corresponding to a(·) and b(·) in (5.19) results in unwanted
oscillation between the true global minimum and its nearby local neighbor.

5.4.1. Structure of optimizers. As a side-benefit, the above analysis explains the remarkably simple
structure of optimal strategies observed for the 3-player synchronous coalition game in [BLPWZ]
of a pure strategy for player 1 and a mixture of just two pure strategy pairs (and their symmetric
counterparts with roles of players 2 and 3 exchanged) for the player 2-3 coalition, of form A = (0, q1)
and B = (q2, q2). The first observation we have already established by a Jensen theorem argument
showing that pure strategies are optimal for player 1. The second now follows by a closer look at
Proposition 5.11 and Corollary 5.12, which characterize best response for players 2-3 as one of the
two strategies A and B of this form, and the optimal strategy for player 1 as the value of p∗1 at
which the minimum of these two responses is maximized. But, this can be seen to occur at a point
where the two responses give equal value, and all other strategies (by the analysis of the proof of
Proposition 5.11 in [CCZ]) a greater one; see Figure 2. Thus, the optimal strategy for players 2-3
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Figure 1. Numerical evaluation of inner loop of Maximin, illustrating oscillation
between local minima; cf. Figure 2.

Figure 2. Blowup of graph plotting best response αa and αb vs. p∗1. Maximin
occurs at p∗1 ≈ 0.6437, α ≈ −0.0056, at intersection of αa and αb.

must consist of a mixture of only these two strategies, for that is the only possiblity that is optimal
against the optimal p∗1.

Indeed, we can give the following complete description.

Proposition 5.14. For continuous 3-player Guts with synchronous coalition, the optimal one-shot
strategy for player 1 is the pure strategy po1 = argmaxR, while an optimum strategy for players 2-3
is

(5.21) (po2, p
0
3) =

{
(pa3(po1, p

1
3(p

0
1)) probability y,

(0, pb3(p
0
1)) probability (1− y)

with

(5.22) y =
|α′b(p01)|

|α′a(p01|+ |α′b(p01|
.
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Figure 3. Blowup of graph plotting best response αa and αb vs. p∗1. with tangent
lines at crossing points showing α′a ≈ .02, α′b ≈ −1.4 at maximin occurring at
intersection of αa and αb, giving probability y ≈ .875 for strategy (p3a, p

3
a) and

(1−y) ≈ .125 for strategy (0, p3b), where, by our formulae, pa3 ≈ .6764 and pb3 ≈ .864.

Proof. The description of the optimal strategy for player 1 follows from the Jensen theorem argu-
ment showing that the optimal strategy is of pure type, together with the definition of R. Mean-
while, by the discussion just above, together with numerics validating the assumptions made therein,
as displayed in Figure 2, we have that the optimal strategy for players 2-3 is of form (5.21). Noting
that, by concavity in p∗1, the expected payoff

ψ(p∗1) = yα(p∗1, p
a
3(po1), p

1
3(p

0
1)) + (1− y)α(p∗1, 0, p

b
3(p

0
1))

for α(p∗1, p
0
2, p

0
3) is concave, with value equal to VS at p∗1 = po1, we find that it is less than or equal

to VS for all p∗1, hence optimal, if and only if ψ′(p01) = 0, or

(5.23) 0 = y∂p1α(p∗1, p
a
3(po1, p

1
3(p

0
1)) + (1− y)∂p1α(p∗1, 0, p

b
3(p

0
1))

at p∗1 = p01. Noting that ∂p1α(p∗1, p
a
3(po1, p

1
3(p

0
1)) = α′a(p

0
1) and ∂p1α(p∗1, 0, p

b
3(p

0
1)) = α′b(p

0
1) by

minimality of αa and αb with respect to p3 at p01, with α′a(p
0
1) and α′b(p

0
1 of opposite signs, we

obtain the result (5.22) by substituting these facts into (5.23) and solving for y. �

In Figure 3, we illustrate the construction of the optimal coalition solution for players 2-3 de-
scribed in Proposition 5.14, displaying tangent lines to αa and αb. The values for pa3, pb3 and y so
obtained are very close to the values 0.68, 0.86, and 0.86 obtained numerically by fictitious play in
[BLPWZ, §5]. In Figure 4, we show the resulting return for player 1 against this optimal strategy
as a function of player 1 strategy p∗1, which can be seen to be strictly negative.

Remark 5.15. A useful comment about our construction of optimal player 2-3 strategies for synchro-
nous coalition guts: the heuristic argument for this depends on an infinite-dimensional fundamental
theorem of games, which is a little delicate and we don’t discuss, asserting existence of the mini-
max. We then conclude easily that it could involve only the two local mininma at po1 where they
coincide. However, building on this intuition, we actually construct one, and verify rigorously the
optimality, thus sidestepping the need for any abstract infinite-dimensional theory. We note that
this infinite-dimensional theory is nontrivial, and is proved with appropriate additional assumptions
on the infinite-dimensional model, which may or may not be satisfied for continuous guts.
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Figure 4. Payoff for player 1 against optimal player 2-3 strategy, plotted vs. p∗1.

5.4.2. The recursive game. The recursive version of continuous guts is based on the value function
T (V ), V ∈ R, defined as the coalition value VS for the game α+ V β, with

(5.24) β = 2− p∗1 − p∗2 − p∗3 + 2p∗1p
∗
2p
∗
3.

Namely, the value forceable over repeated rounds of play by a coalition of players 2-3 may be seen
to be equal to

(5.25) V∗ := lim
n→∞

V n
S := Tn(0),

where V n
S is a nonincreasing sequence, with V1 equal to the value VS of the one-shot game discussed

just above.
Noting that β is linear in p∗1, so that α + V β is concave with respect to p∗1 for any V , we have

the formula

(5.26) T (V ) = max
p∗1

min
p∗2,p

∗
3

(α+ V β)(p∗1, p
∗
2, p
∗
3)

analogous to the one-shot case. In principle, we could carry out a best response analysis for the
recursive game like that of Proposition 5.11 to determine sharp estimates for V∗ directly, without
numerical optimization. See Appendix B for further discussion, in particular the computation of
T (V ) carried out in Proposition B.1.

5.5. Discretization. As in [BLPWZ], one may approach the numerical study of continuous Guts
Poker by discretizing the pure strategy space (p∗1, p

∗
2, p
∗
3) ∈ [0, 1]3, considering equally spaced values

p∗j = 0, 1/N, . . . , 1 − 1/N for an N -point mesh. This determines an N × N × N discrete three

player game, that is also symmetric, zero sum, differing by at most (1/N) max |∇α| in values VA
and VS . Amusingly, this game corresponds to a simplified version of discrete Guts Poker, played
with hands consisting of a single card taking values 1, . . . , N with equal likelihood and chosen
with replacement. Though amenable to numerics, the discrete game does not necessarily share the
favorable property of the continuous game that optimal strategies be of pure type, nor of unique
local minima for the minmax problem; at most we can say that they are nearby their continuous
analogs. As these games are large and of a rather special type induced by closeness to the special
structure of continuous Guts, and because we possess already a complete solution in the continuous
case, we shall not carry out a detailed numerical study of the discretized case. We remark only
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that nonsystematic trials suggest that both maximin and minimax problems seem amenable to all
of the numerical methods discussed below, with, however, some unwanted “spreading” of strategies
away from the pure strategies that are optimal for the continuous case. (The exception is Fictitious
play as studied in [BLPWZ], which does stay near pure strategies but which is applicable in full
strength only for the synchronous coalition case.)

6. Numerical optimization

In the previous sections, we have answered to various extents the analytical problems posed
in [BLPWZ] of when and for what types of systems do VS = VA < NS , VS < VA < NS , or
VS < VA = VN? In particular, we have answered in the affirmative the main open problem whether
VA = VN = 0 for continuous Guts Poker, as conjectured in [BLPWZ].

We now turn to the further challenge posed in [BLPWZ] of efficient numerical approximation
of VA for general systems, not necessarily possessing any special structure by which this may be
deduced analytically. For this task, our explicitly soluble examples of Rock-Paper-Scissors, and
randomly generated matrix games serve as useful benchmarks.

6.1. Minimax vs. Maximin. Consider a general m ×m ×m three-player symmetric zero-sum
game, with players 2-3 acting as a coalition to minimize the payoff to player 1. Denoting the
payoff for pure strategies i, j, k as Pijk, and mixed strategies by probability vectors x, y, z ∈ Rm+,∑

i xi =
∑

j yj =
∑

k zk = 1, we distinguish the Maximin

(6.1) max
x

min
y,z

∑
i,j,k

xiyjzkPijk = max
x

min
j,k

∑
i

xiPijk = VS

and Minimax

(6.2) min
y,z

max
x

∑
i,j,k

xiyjzkPijk = min
y,z

max
i

∑
j,k

yjzkPijk = VA

problems determining VS and VA, respectively.
The former, a standard 2-player game, may be determined by the simplex method [D] or as

in [BLPWZ] by the method of fictitious play [B, R], an iterative scheme in which the two teams
(player 1 and players 2-3) play a series of games in which each plays the best response against
the other’s historical empirical strategy distribution. As a linear programming problem, it could
also in principle be treated also by modern interior point methods, or, more generally, any of the
powerful techniques developed for convex numerical optimization; see [Ne, CVX] and references
therein. A natural question is whether and in what context one of these alternative choices might
offer improved performance as compared to fictitious play.

The latter, Minimax problem is more complicated numerically. For, maxi
∑

j,k yjzkPijk is not
necessarily convex, making this a nonconvex optimization problem on the boundary of current
investigations. In particular, it is not clear how the game-theoretic origins of the problem might be
exploited to reduce computation, other than the replacement of the inner optimization over x with
maximum in i, already recorded in (6.2). So, for the moment, available techniques are those for
general nonconvex optimization problems such as originate in machine learning and elsewhere: for
example, quasi-Newton techniques such as the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [Br, F1, F2, G, S] supported in SciPy [SPy], or slower but more reliable first-order
gradient descent. To avoid trapping in local minima, one may add annealing or “basin-hopping”
[WD]; indeed, the Python-supported algorithms we test here generally include some version of these
as built-in features.

Additionally we explore the question of the optimal implementation of constraints. The BFGS
method can handle constraints only in the form of bounds on individual components of the strategy
vectors. While we can adjust our problem by adding a penalty, it is more natural for the restriction
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to be expressed as an equality (|x| = 1). For this reason, we additionally experiment with the
various continuation type methods in SciPy, particularly the Sequential Least SQuares Program-
ming (SLSQP) method, which allows for much more general linear constraints. The details for our
numerical protocol can be found in Appendix C.

6.2. The Maximin problem. Numerical approximation for the basic two-player game problem
represented by (6.1) has been well studied in the literature. See, for example, the discussion of
[GHPS1, GHPS2] motivated by Texas Hold’em Poker, and references therein. The conclusion is
that for large linear programming problems such as occur for standard Poker games, standard
interior point programming methods involve memory requirements that are prohibitive. Progress
for such games has proceeded instead mainly by “multi-grid” type methods, iterating over a series of
approximate problems, and/or smoothing methods as described in [GHPS1, GHPS2]. Here, guided
by these previous results, we investigate the performance of various methods on the maximin
problem for our example problems of Odds-Evens, Rock-Paper-Scissors, and discretized continuous
guts poker, as well as for general randomly chosen large games.

With an eye toward the Minimax problem of our main interest, we mainly restrict ourselves to
techniques available for general, nonconvex nonlinear optimization problems, consisting of (BFGS)
and variants supported in NashPy and SciPy, with and without smoothing. As benchmarks, we
include also computations by the simplex method and the method of fictitious play.

6.2.1. Odds-Evens and Rock-Paper-Scissors. We start with the Rock-Paper-Scissors (OMI) and
(OMO) games, with payoffs

(6.3) Ψ(x, y, z) = 2y · z − x · (y + z)

and

(6.4) Ψ̃(x, y, z) := −Ψ(x, y, z),

respectively, where x, y, z ∈ R3 are probability vectors. As noted in Remark 4.5, one may compute

directly the innner minimization loop, optimized at extreme values yi = δki and zi = δji for some
j, k, to obtain objective functions

(6.5) Φ(x) := min
y,z

Ψ(x, y, z) = min
j

(xj)− 1

and

(6.6) Φ̃(x) := min
y,z

Ψ̃(x, y, z) = 2(min
j

(xj)− 1)

to be maximized in x.
Noting that the Odds-Evens games can be viewed as restrictions to x3 = y3 = z3 = 0 of the

Rock-Paper-Scissors game, we find that (6.3) and (6.4) hold here too, whence, computing the inner
minimization loop by hand, we obtain objective functions

(6.7) Φ(x) := min
y,z

Ψ(x, y, z) = 0− x1 − x2 ≡ −1, x, y, z ∈ R2

for (OMI), and (as in the previous case)

(6.8) Φ̃(x) := min
y,z

Ψ̃(x, y, z) = 2(min
j

(xj)− 1), x, y, z ∈ R2

for (OMO).
For a general symmetric N × N × N game, the inner loop can be carried out numerically at

cost O(N2) by cycling through the possible pure strategy combinations for players 2 and 3, so
this is essentially the same as the direct evaluation above. However, analytical derivatives are not
generally available and so we will not use methods that require these.
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Figure 5. Pyramid function, contour map for the RPS OMI maximin.

Figure 6. Smoothed contour map for the RPS OMI maximin.

The main point is that the exact formulae above can be used for forensic evaluation/insight into
results. For example, the formula (6.7) shows that the (OMI) problem for odds-evens is degenerate
and independent of the strategy of player one; hence it is not interesting to carry out. The formula
(6.8) shows that the (OMO) problem for odds-evens is maximization of a simple scalar “hat”
function,

(6.9) max
x1

min{x1, 1− x1}, 0 ≤ x1 ≤ 1,

for which any method should presumably perform well.
Meanwhile, the formulae (6.5) and (6.6) are multiples of each other, so that the maximin problems

for (OMI) and (OMO) are essentially identical, and should display equivalent performance, giving
both a useful numerical double check and a reduction of our studies. Both Rock-Paper-Scisssors
version reduce effectively to maximization of a “triple hat” or “pyramid” function

(6.10) max
x1,x2

min{x1, x2, 1− x1 − x2}, 0 ≤ x1, x2, x1 + x2 ≤ 1.

See Figs. 5 and 6 for contour map and smoothing. (Note: the map is extended for numerical
purposes to the full interval [0, 1]2, with a penalty function enforcing the boundary condition
x1 + x2 ≤ 1.

6.2.2. Numerical outcomes for RPS Maximin. For all our RPS variants, we attempt several nu-
merical optimization methods. First we compare methods with soft constraints in the form of a
BFGS method with penalty and methods using a hard constraint. Additionally, we compare a
nonsmoothed objective function with an lp smoothed objective function and a softmax smoothed
objective function as decribed in Appendix C. We specifically use two examples of `p smoothing.
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One which is very heavily smoothed, p = 2, and one which is a closer approximation to the sharp
function, p = 100.

For the maximin RPS using either full or soft constraints, the nonsmooth method often termi-
nates early, but largely gets quite close to the expected equilibrium strategy of (13 ,

1
3 ,

1
3), varying

by at most about .04. Meanwhile any smoothing technique will find a solution to 8 decimal points
very quickly. For this problem, though the nonsmoothed version is mostly effective, there is a clear
advantage to any smoothing method. Notably, since the OMI and OMO problems are equivalent
for the maximin problem, we only simulate OMI.

6.3. The Minimax problem. The Minimax problem (6.2) does not correspond to a classical
two-player game, and is generically not equivalent to a linear programming problem, or even a
convex one. For example, even for the simplest example of odds and evens, the payoff functions
(2.1), (2.2) are nonconvex with respect to (y, z). Thus, we cannot use the simplex or interior point
programming methods. Nor does fictitious play yield a solution, as we discuss further in Section
6.4 just below. Accordingly, we are restricted to off-the-shelf routines such as (BFGS) and variants,
with no alternatives with which to compare. Indeed, our only benchmarks here are the exact
solutions found in earlier sections.

6.3.1. Odds-Evens and Rock-Paper-Scissors. Starting again with (6.3)-(6.4), we have that the pay-
off function for (OMI) is, for both Odds-Evens and Rock-Paper-Scissors,

Ψ(x, y, z) = 2y · z − x · (y + z)

and the payoff function for (OMO), also for both, is

Ψ̃(x, y, z) := −Ψ(x, y, z).

Thus, the objective functions φ(y, z) := maxx Φ(x, y, z) and φ̃(y, z) := maxx Φ̃(x, y, z) for the
Minimax problem are given in both cases by

(6.11) φ(y, z) = 2y · z −min
j

(yj + zj)

for the OMI problem and

(6.12) φ̃(y, z) = −2y · z + max
j

(yj + zj),

where ψ and ψ̃ are to be minimized over probability vectors y and z, with y, z ∈ R2 for Odds-Evens,
and y, z ∈ R3 for Rock-Paper-Scissors.

Odds-Evens (OMI). Let us first consider Odds-Evens (OMI). Setting y = y1, z = z1, this can
be written as the minimization problem

(6.13) min
y,z

α(y, z) := 2
(
yz + (1− y)(1− z)

)
−min{y + z, 2− y − z},

for 0 ≤ y, z ≤ 1, or

α(y, z) =

{
4yz − 2y − 2z + 2 y + z ≤ 1

4yz − y − z y + z ≥ 1

with
α(y, z) = 1 + 4yz − 2y − 2z = −(2y − 1)2

for y + z ≡ 1.
The function α, as depicted in Figures 7 below, is a sort of nonsmooth hyperbolic paraboloid,

with saddle point at the Nash equilibrium (y, z) = (1/2, 1/2), minima at (y, z) = (0, 1), (1, 0), and
a fold along the off-diagonal y + z = 1.

Numerical outcomes for Evens-Odds OMI: BFGS worked “generically” here, meaning random
data converged. The convergence was always to one of the global minima in 1000 test trials.
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Figure 7. Contour map, objective function for Odds-Evens Minimax (OMI).

Figure 8. Smoothed contour map for Odds-Evens Minimax (OMI).

Odds-Evens (OMO). We next consider Odds-Evens (OMO). Setting y = y1, z = z1, this can
be written as the minimization problem

(6.14) min
y,z

α̃(y, z) := −2
(
yz + (1− y)(1− z)

)
+ max{y + z, 2− y − z},

for 0 ≤ y, z ≤ 1, or

α̃(y, z) =

{
−4yz + 2y + 2z − 2 y + z ≥ 1

−4yz + y + z y + z ≤ 1

with

α(y, z) = (2y − 1)2

for y + z ≡ 1. Meanwhile, α(y, z) = −4y2 + 2y for y = z and 0 ≤ y ≤ 1/2, vanishing at both
endpoints. Hence, the Nash equilibrium (y, z) = (1/2, 1/2) may be seen to be a global minimizer
for α, along with (0, 0) and (1, 1), in agreement with Proposition 2.1. There are in addition smooth
saddle points at (1/4, 1/4) and (3/4, 3/4). See Figure 9.

Numerical outcomes for Evens-Odds OMO: BFGS worked “generically” here, meaning random
data converged, but data starting at either saddle points or corner points (1/4, 3/4) gave abnormal
termination error, as did termination at Nash equilibrium. Smoothing fixed these issues in all
trials. One can compute approximately by eye from Fig. 9 the likelihood of terminating at Nash
equilibrium vs. corner point by adding the areas of the basins of attraction, slightly less than
2(1/4)2 + 2(1/4× 3/4) = 2(1/4) = 1/2. This pattern is also observed in numerics.

Rock-Paper-Scissors (OMI) and (OMO). For the Rock-Paper-Scissors Minimax, the prob-
lem is framed in a subdomain of R4 consisting of the product of two simplices, and therefore the
simple graphical descriptions of the Evens-Odds case are not available. However, as described
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Figure 9. Contour map, objective function for Odds-Evens Minimax (OMO).

Figure 10. Smoothed contour map for Odds-Evens Minimax (OMO).

in Propositions 4.1 and 4.4, the rough features are for (OMI) that global minimizers appear at
y = (1, 0, 0), z = (0, 1/2, 1/2), y = (0, 1, 0), z = (1/2, 0, 1/2), and y = (0, 0, 1), z = (1/2, 1/2, 0), with
additional local minimizers at y = (0, 1/3, 2/3), z = (2/3, 1/3, 0); y = (2/3, 1/3, 0), z = (0, 1/3, 2/3);
y = (1/3, 0, 2/3), z = (1/3, 2/3, 0); y = (1/3, 2/3, 0), z = (1/3, 0, 2/3); y = (0, 2/3, 1/3), z =
(2/3, 0, 1/3); and y = (0, 1/3, 2/3), z = (2/3, 1/3, 0), and a nonsmooth saddle at the Nash equi-
librium y = z = (1/3, 1/3, 1/3), while for OMO that only global minimizers appear, at y =
(1/3, 1/3, 1/3), z = (1/3, 1/3, 1/3), y = (1, 0, 0), z = (1, 0, 0), y = (0, 1, 0), z = (0, 1, 0), and
y = (0, 0, 1), z = (0, 0, 1). In the first case, global minimizers are mixed strategy type, and in
the second all pure strategy type. The second case features interior saddle points in the smooth
portion of the domain. The first has no associated saddle points in the smooth part of the domain,
but has a nonsmooth saddle point at the Nash equlibrium.

6.3.2. Numerical outcomes for RPS Minimax. We run the same tests as for the maximin problem,
however in this setting the OMI and OMO problems are treated separately.

For the OMI problem with full constraints, the nonsmoothed method fails about 25% of the time.
`2 smoothing performs very consistently, reaching a functionally exact (i.e., 7-8 digits accuracy)
solution in all 20 of our trials. `100 smoothing however failed in 15% of our trials. There is
additionally a local min in this problem, specifically the strategy pair (1/3,2/3,0),(1/3,0,2/3). The
nonsmoothed method reached this pair in 15% of trials, the l2 smoothed problem avoided it entirely,
the `100 smoothing reached it 45% of the time, and the softmax smoothed reached it 55% of the
time. With soft constraints, the nonsmoothed method performed very badly. While there were no
outright failures, the method consistently failed to get close to the true min, or even the local min.
The `2 smoothing also performed very badly, while the `100 smoothing performed relatively well,
reaching a local min in 50% of trials. The softmax performed similarly to the l100 smoothing. All
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of these methods consistently terminated too early, even with very small values for the stopping
condition. For this problem, hard constraints drastically outperformed the penalty method.

Meanwhile for OMO with full constraints, the nonsmoothed method failed in 5% of our 20 trials.
In each other case, the method successfully converged to a local min. In 80% of trials, the method
successfully converged to the true global min. In the other 15% of trials, the method converged to
the local min of the form (1/3,2/3,0),(1/3,0,2/3). With l2 smoothing, the process converged to the
true global min in all trials. At `100 smoothing, the errors were reintroduced. The method failed
in 5% of trials, reaching the local min in 50% of trials, and reached the true min in 45% of trials.
The softmax method never failed, but reached the local min in 55% of trials while reaching the
global min in only 45% of trials. With soft constraints, the nonsmoothed method reached global
min in all trials. The `2 smoothing reintroduced the local min in 40% of trials, however all other
smoothing methods also had a 100% success rate.

Remark 6.1. We conjecture that observed failure to find local minima for smoothed methods may
be a result of oversmoothing eliminating local minima.

6.4. “Joint” fictitious play. Finally, we make a few comments regarding fictitious play, and an
interesting “joint” variant for coalitions. Classical fictitious play, for any number of players, if it
converges, must converge to a set of mixed strategies that for each player i ∈ {1, . . . , n} is optimal
against the limiting strategies of the remaining players j 6= i. But, this is just an alternative
formulation of the definition of Nash equilibrium. Hence,
• Fictitious play, if it converges, must converge to a Nash equilibrium.
As, even for three player odds and evens, optimal asynchronous coalition strategies are not

necessarily Nash equilibria, this shows that fictitious play in general cannot be used to determine
VA. An appealing idea is to modify the n-player symmetric game by pooling the winnings of players
2-n, then run a standard n-player fictitious play algorithm on the modified game. We will call the
resulting algorithm “joint” fictitious play, and the resulting Nash equilibria “joint” Nash equilibria.

It is clear that a Nash equilibrium need not be a joint Nash equilibrium, and vice versa. Thus,
these notions do in general capture different types of information. However,
• A symmetric Nash equilibrium of a zero-sum symmetric game is also a joint Nash equilibrium.

For, if a change from Nash equilibrium of (without loss of generality) player 2 penalizes player
2, then it benefits equally player 1 and players 3-n, in particular benefitting player 1. Thus, it
penalizes the pooled winnings of players 2-n.

6.4.1. Numerical Results for Joint Fictitious Play. For the Evens-Odds problem, JFP seems to
converge in all test cases with randomly chosen initial data. In the case of OMI, joint ficitious play
finds the Nash equilibrium in about 52% of trials and the global minima in all other of the 1000
trials. For OMO, joint fictitious play converged to the global minimizer (which is the same as the
Nash Equilibrium for this problem) in 100% of 1000 trials. In each trial, 1000 iterations of the FP
algorithm were performed.

For the RPS problem, JFP also seems to converge in all test cases. For OMI, JFP finds the Nash
Equilibrium in about 56% of 1000 trials and the global minimum in all others. For OMO, all 1000
trials converged to a ’corner’ global minimizer (which are also Nash Equilibria).

7. Experiments with Random Games I: efficiency

In this section we aim to explore the efficacy of different numerical methods for computing the
minimax of a game as we increase the dimensions of the matrix (i.e. we increase the number of
strategies available to each player). To test this, we use randomly generated N ×N matrices with
entries chosen uniformly between -1 and 1, simulating a random 2-player game. Recall that the
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minimax problem can even for multi-player games we formulated as a 2-player game between two
coalitions; hence, there is no loss of generality in framing the problem this way.

We compare four different methods with various parameters: Fictitious Play, Nonsmoothed
minimization, `p Smoothed minimization, and Softmax smoothed minimization. We additionally
compare each of the minimization methods with BFGS type methods using inequality constraints
and SLSQP type methods using equality constraints. A detailed description of each of these
methods can be found in Appendix C.

For each of `p smoothed and softmax, we perform runs with several parameter values. For `p, we
run p = 1, 10, 50, 100, 200, 300, 400, 500. For the softmax method, we run with ε = 1, .5, .25, .0125, 1e−
4, 1e − 5, 1e − 6, 1e − 7, 1e − 8. In addition, we run Fictitious play with iterations equal to
3000, 5000, 12000, 35000, 80000, 1000000, 4000000, 12000000.

We measure accuracy by running each procedure twice (except Fictitious Play), once on the
original matrix and once on the negative transpose. If perfectly accurate, these two experiments
will produce the same value. Thus we use the difference between the two values, the ’value gap’
as a benchmark for accuracy. Fictitious Play has known guaranteed accuracy for a high enough
number of iterations, this is discussed more in Appendix C and Appendix D.

The detailed results can be found in Appendix D, however we summarize them here. First we
analyze the efficacy of the various smoothing methods. For very low N , all methods are compa-
rable. However, as soon as N = 8 the nonsmoothed method begins to drastically underperforms
both smoothing methods in accuracy. Both `p and softmax methods tend to perform better with
parameter values smoothness, but not so high as to reintroduce the issues of the nonsmoothed
methods. At very high N , softmax begins to have an edge in terms of computation time, while
accuracies stay comperable.

We also analyze the difference between the BFGS and SLSQP methods. Even at low N , we see
that the BFGS method has a clear speed advantage of about 2 orders of magnitude, while SLSQP
has an accuracy advantage of about 7 orders of magnitude in the case of N = 2. By N = 256, the
speed advantage of BFGS reamins is closer to 3 orders of magnitude, while the accuracy advantage
of SLSQP has fallen to about 1 order of magnitude. This trend is also true for the intermediary
values of N . This suggests that as N grows very large, there will be a point where BFGS performs
unambiguously better. However in this range of N , there is a reasonable tradeoff between accuracy
and time.

8. Experiments with Random Games II: VA vs. VN , VS

In this section, we investigate random 3-player N × N × N symmetric games for various small
to medium sized values of N , comparing the efficiency, accuracy, and reliability of several different
methods. In contrast to the previous section, our particular interest here is on nonconvex effects,
and determination of the asynchronous coalition value VA, along with its relation to the synchronous
and Nash values VS and VN .

To simplify comparisons, we restrict to symmetric games, guaranteeing that VN = 0. This is
done by randomly populating a matrix with entries chosen uniformly in [0, 1] obeying the symmetry
rules

(8.1)
Pijk = Pikj ,

Pijk + Pjik + Pkij = 0
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Figure 11. The case N=4. We perform 10 trials of each method on a randomly
generated tensor according to the symmetry rules above. We first observe the re-
markable consistency of the red and pink lines representing the synchronous problem.
Beyond this all methods perform reasonably, with SLSQP being the most consis-
tent. BFGS has one catastrophic failure but is generally around 0 or the true value.
Fictitious play does not quite converge for many of the trials but often comes close.
We first see a reocurring behavior of Fictitious Play, the tendency of it to find value
0. We also note the obvious visible gap between predicted VA and VS .

where Pijk is return to player one, hence also:

(8.2)

Piii = 0,

Pijj = −2Pjji,

Piik = −(1/2)Pkii,

Piji = Piij = −(1/2)Pjii.

The methods we test include a BFGS approach with softmax smoothing and inequality con-
straints, a SLSQP approach with hard constraints and softmax smoothing, and a Fictitious Play
based method with slight variations for VA and VS . For VA we use the Joint Fictitious Play Method
described earlier, where players 2 and 3 minimize player 1’s payoff independently. For VS Fictitious
Play, we join the strategies of players 2 and 3 into one synchronous strategy.

To test the convergence of each method, we compare between the predicted value of each method
and the value of the actual best player 1 response to the strategy found by this method. If the
method has properly converged, then these values should be equal. This leads to the results in
the following figures, which include the results for 10 trials on the same tensor. Each figure uses a
different payoff tensor, corresponding to a different randomly chosen symmetric game.

Worth noting immediately is that VS is easy to compute for all tested methods. This is ex-
pected due to the much simpler nature of the problem. For this reason we leave VS out of further
experiments. However, the methods struggle more to predict VA. The best performer is SLSQP.
This method is very consistent, passes all tests for convergence, and predicts the minimum of the
results. The BFGS on the other hand does not work particularly well, especially for the lower N
values. This is somewhat expected as BFGS is primarily meant to be applied to high dimensional
problems. We do notice that BFGS often terminates due to ’abnormal termination in linesearch,’
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Figure 12. The case N=6. Again the green line, SLSQP, shows the best perfor-
mance for VA while all methods succeed for VS . The BFGS method demonstrates
catastrophic failure in this case, due to failed linesearch errors, indicating a mis-
matched gradient. AFP gets close to the value but does not converge well, still
exhibiting the tendency to find the zero value.

Figure 13. The case N=8. Here SLSQP again performs the best. BFGS finds
the equilibrium several times and converges fairly well, but still often has linesearch
errors creating premature termination. We can clearly see the fictitious play does
not converge. In fact, it is so far from convergence that it often finds values below the
true value (indicating it has found strategies which are not close to a best response
pair).

which we will discuss more later. The Asynchronous Fictitious Play works very well for low N ,
however even with N as high as 8 it struggles to converge even when given a considerably longer
runtime that the BFGS-type methods ( 100 times longer runtime or more). For Fictitious Play to
be viable in higher dimensions, some improvement will be necessary. Worth noting is the surprise
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Figure 14. The case N=4. We perform 10 trials of each method on a randomly
generated tensor according to the symmetry rules above. We see the green line,
SLSQP, is the most consistent and best performing method. The BFGS (blue and
pink) also hits the proper value regularly (both adaptive and classical). We can
see the dotted red line (predicted improved fictitious play value) often comes very
close to the true value, however since the distance from the solid red line is large, it
has not converged. The same true for classical fictitious play. Fictitious Play also
displays the typical behavior of often finding value 0.

that the Asynchronous Fictitious Play seems to work at all. Unlike regular fictitious play, here
we have no guarantees at all about performance. We also performed tests on tensors without the
previously described symmetry properties, and very similar results were found, though we do not
display them here.

We noticed before that the BFGS method tends to fail due to a ’abnormal termination in
linesearch’ error, which heuristically indicates that the computed gradient does not match the
true optimization landscape. In other words, that the function is not sufficiently smoothed and
that we are near a fold in the function. To adjust for this, we add an adaptive version of BFGS.
In this method, if one of these errors is reached, we increase the ε parameter of the interior max,
thus further smoothing the function. This is done until the process can continue without error or
the ε reaches a maximum threshold. Once the process is able to continue, which indicates that
the procedure has moved beyond the fold, the ε is reset to its original more accurate value. This
amounts to performing classical BFGS, then if a linesearch error is found, increasing the smoothing
until the method can continue.

We also test an improved version of Asynchronous Fictitious Play which updates the strategies
at each step by the rule

(8.3) xn+1 = (1− θ(n))xn + θ(n)BRx(yn, zn)

and similarly for y and z. Here θ = 1/n corresponds to the classical method. This method should
allow for faster convergence by allowing larger step sizes for appropriately defined θ(n). In particular
we take θ(n) = max( 1

n , .001). The value .001 can be thought of as an accuracy threshold, since we
can never get a strategy more accurate than within .001 of the true equilibrium except by dumb
luck. The results of both improved methods are tested on random symmetric matrices with the
results encapsulated by the following figures.
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Figure 15. The case N=6. Again the green line, SLSQP, shows the best per-
formance. The fictitious play methods perform similarly to the previous figure,
bouncing between a predicted value of 0 and the true value but not converging well.

Figure 16. The case N=8. Here SLSQP again performs the best. We are enter-
ing the regime where BFGS begins to consistently terminate early, requiring the
adaptive. While the adaptive approach (pink) shows a large improvement over the
traditional approach (blue), it is still not performing nearly as well as SLSQP. We
also see the improved fictitious play overtake the classical method.

While the improvements to the methods help (especially in the cases with larger N), the SLSQP
remains the best performing algorithm. The BFGS confirms much more regularly with the adaptive
method rather than the traditional, and tends to get a lower value. The improved fictitious play
shows similar improvements over the original method. We expect that these improvements will
become even more significant as N is increased. However, we emphasize that FP does not always
converge, hence cannot be depended upon in any case as a stand-alone method.

31



Figure 17. The gap (VA − VS) distribution for case N=4. We notice that the gap
distribution appears to decay exponentially, with a likely additional mass near 0.
This distribution has mean .12 and standard deviation .15. We additionally observe
negligible correlation with the value of VS(∼ .04).

Worth noting is that we are only able to run these simulations for relatively low values of N . As
shown in the two player case there is likely a point as N increases where BFGS will significantly
overtake SLSQP, at terms of accuracy cost per time.

8.1. Comparison of VA, VN , and VS: frequencies of typical gaps. We are additionally
interested in the gaps between VA, VN = 0 and VS : in particular whether such gaps exist in
generality and what are their typical sizes. This may be regarded as a followup for more general
systems of the analyses for small systems in Sections 2 and 3.

These experiments are carried out by testing a large number of randomly chosen N × N × N
payoff tensors, N = 4, 6, and recording the gaps VN − VS = |VS | and VN − VA = |VA|. In Figures
17-20 we display the empirical frequency distributions of the gap VA − VS between asynchronous
and synchronous coalition values3 along with the “relative gap”

(8.4) θ := VA/VS

measuring the relative location of VA between the two limits VS and VN . Together, these give an idea
of (a) the advantage gained by synchronous coalition, and (b) the advantage lost by asynchronicity.

It should be noted that we lack the statistical power to draw complete conclusions about these
distributions. We only observe 300 samples, and additionally we provide no explanation for the
appearance of the point masses in all histograms.

9. Discussion and open problems

Summing up, we have answered rather completely the problems posed in [BLPWZ] regarding
asynchronous coalition games regarding whether and how often there can appear a gap between
the value forcable by player 1 and the value forcable by a coalition of remaining players: that is,
the situation of a nonzero gap

VA − VS ≥ 0

between the asynchronous coalition value and the synchronous one.4 In particular, we have shown
that such a gap exists for the motivating example of 3-player continuous Guts Poker, with VA =
VN = 0 equal to the Nash equilibrium value of zero, but VS strictly negative. Indeed, we have

3Recall, this is also the gap between what coalition players can force against player 1 and what player 1 can force
in asynchronous play.

4Recall that the synchronous value VS is the best that player 1 can force in either of the synchronous or asynchro-
nous games.
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Figure 18. The θ distribution for case N=4. We notice that this distribution seems
to be roughly uniform but with concentrated masses at 0 and 1. We tested several
data filtering methods to see if there is consistent behavior in the formation of the
masses, but did not reach any definitive conclusions. This distribution has mean
.53 and standard deviation .36. We also note there is negligible correlation with the
value of VS(∼ .04).

Figure 19. The gap (VA − VS) distribution for case N=6. We notice this distri-
bution is extremely similar to the N=4 case. This distribution has mean .11 and
standard deviation .1. We also note there is negligible correlation with the value of
VS(∼ .13).

gone on to give considerable further information, giving essentially a complete rigorous solution of
optimal synchronous, asynchronous, and Nash equilibrium play: quite remarkable for a real-world
version of poker that is frequently played.

Our analysis is based on special convexity properties of continuous guts poker, which at the
same time suggests that this game is quite special and perhaps not a good exemplar of generic
behavior. We have therefore supplemented this investigation with studies of asynchronous coalition
in N ×N ×N symmetric 3-player games with (i) analytical study of general games for N = 2 and a
simple Rock Paper Scissors game for N = 3; and (ii) numerical study of randomly chosen games for
N = 4, 6, 8, . . . . The latter question ties into more general issues of effective convex and nonconvex
optimization for large systems.

The former investigation shows that nonzero gap is indeed a frequent occurence in asynchronous
coalition play, occurring for a wide variety of games with N = 2 and 3; moreover, local minima, as
might be expected, do appear, along with saddlepoints for N ≥ 3. The latter suggests for randomly
chosen symmetric games with individual payoffs uniform in [−1, 1] that a typical gap VA − VS for
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Figure 20. The θ distribution for case N=6. We notice this distribution is ex-
tremely similar to the N=4 case. We tested several data filtering methods to see if
there is consistent behavior in the formation of the masses, but did not reach any
definitive conclusions. This distribution has mean 0.63 and standard deviation .28.
We additionally observe negligible correlation with the value of VS(∼ .09).

N = 4 is .12 and for N = 6 is .25, in both cases only mildly correlated with VS . Likewise θ in both
cases is roughly one half, with weak correlation.

In the course of our numerical studies, we compare several off-the-shelf methods for accuracy
and efficiency/computation time. Our results were that SLSQP were the most dependable for
finding global minima, but for large 2-player games (associate with convex optimization) were
prohibitively costly and at some point overtaken by smoothed BFGS methods in agreement with
conclusions of [GHPS1, GHPS2]. For 3-player games (associated with nonconvex optimization),
BFGS methods often returned local rather than global minima, making SLSQP more attractive for
accuracy. However, all methods became prohibitively expensive for the Python-based algorithms
we used, and we were unable to carry out computations for more than medium sized systems, in
particular not up to a point where we could observe crossover in efficiency from SLSQP to BFGS
methods as in the 2-player case.

We also tested various modifications of Fictitious play with varying results. Definitely this often
failed altogether for some 3-player games, but for many was surprisingly accurate. Extremely rapid
growth in computational cost made this method noncompetitive in any case. Taken together, our
results suggest that a hybrid approach using several methods and repeated trials may be the most
prudent for the moment. However, when computationally feasible, the SLSQP method served as a
dependable “gold standard” for our nonconvex computations.

TODO STOPPED HERE.
mention that local min and saddles do occur (as one would expect), for n × n × n symmetric

games with n ≥ 3. (not N = 2 though).
David’s rule.. why does it work? Open problem, see Remark 5.5.

9.1. Kevins notes, don’t delete please! UPDATED 1-20-2024
TODO: mention that unique local min for y, z explains good behavior for guts minimax. Always

true for maximin (well, no, just it is convex, so well behaved...) (demote this to a remark, though
we do not record carefully here)

TODO: Mention Basin hopping, BFGS standard. comparisons.
Texas hold-em, smoothed BFGS better for larger N .. we couldn’t reach with off-the-shelf pro-

grams. (in the literature. See, for example, the discussion of [GHPS1, GHPS2] motivated by Texas
Hold’em Poker, and references therein.)

scaling of values for large games?
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quote from earlier: Worth noting is that we are only able to run these simulations for relatively
low values of N . As shown in the two player case there is likely a point as N increases where BFGS
will significantly overtake SLSQP, at terms of accuracy cost per time.

original card game? mention?
SLSQP is topological multigrid one might say. finds global min., very accurate, but expensive.

For nonconvex, kind of plays the role of simplex.
Fictitious play is another “gold standard” for 2-player game. similar cost according to literature.

(anectdotal)
conclusions:
guts is special, not so representative... larger questions open up though.
OPEN PROBS:
n-player cont. guts. reduces to calc problem so should be determinable.
freq dist and understanding them. even typical value for large random (not symm) game.
better num method! and look at larger N ... like hold’em studies maybe... not so clear.
what to operationally do about gap...? comments: VA relevant to “blind” negotiations, or rapid

response (requireing preplanned/wired in- distributed- strategy w/out communication.
Real guts, with cards... some finer points. (conditional probs.)
Joint and std FP for 3-player games... how often converge? and to what? note for bigger N that

costlier than smoothed BFGS as expected. (from interior intuition plus texas holdem guys)
3-player, large N experiments.
RPS as recruiting tool? https://wrpsa.com/from-playground-game-to-employment-strategy-the-

rise-of-rock-paper-scissors-in-the-hiring-process/

Appendix A. Minimax vs. critical point

We give here a simple result used in the analysis of continuous guts.

Proposition A.1. Let f(x, y) : (Rm × Rn)→ R be C1. If (x∗, y∗) is a maximin for the problem

max
x

min
y
f(x, y)

and y∗ is the unique min of f(x∗, ·), then (x∗, y∗) is a critical point of f . If argminf(x∗, ·) is
connected and m = 1, then there exists some y∗2 ∈ argminf(x∗, ·) such that (x∗, y∗) is a critical
point. Similarly, a minimax (x∗, y∗) for f(x, y) : (Rm × Rn)→ R C1 is a critical point if y∗ is the
unique max of f(x∗, y), or if argmaxf(x∗, ·) is connected and m = 1.

Proof. (First assertion) By continuity, together with uniqueness of minimum y∗, for each neighbor-
hood M of x∗ there is a neighborhood N of y∗ such that

(A.1) f(x, y) > f(x∗, y∗) for x ∈M and y 6∈ N .

But, also, f(x∗, ·) is stationary at y∗, so that fy vanishes at (x∗, y∗). If fx does not vanish there,
then moving in a direction h in x for which f increases at (x∗, y∗), we have by differentiability

f(x∗ + th, y∗ + k) = f(x∗, y∗) + tfx · h+ o(t) > 0

for t ≤ t0 sufficiently small, and arbitrary bounded directions k. Taking M , N to lie within the
region of applicability, we have that

(A.2) f(x∗ + t0h, y) > f(x∗, y∗) for y ∈ N
Combining (A.1) and (A.2), we find that f(x∗ + t0h, y) > f(x∗, y∗) for all y, hence, x∗ is not the
maximin, a contradiction. It follows that (x∗, y∗) is a critical point.

(Second assertion) In this case x is scalar. Taking h = 1 ∈ R in the previous argument, we find
that fx cannot be of one sign on argminf(x∗, ·). For, then, by continuity, it would be bounded
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above or below, and the previous argument would again give a contradiction. Thus, fx(x∗, ·)
changes sign, and so must vanish somewhere on argminf(x∗, ·), giving the result.

(Minimax) This scenario is exactly symmetric to the first. �

Remark A.2. If argminf(x∗, ·) is not assumed connected, then there are easy counterexamples
with argminf(x∗, ·) consisting of two isolated points y1∗, y

2
∗ with fx(x∗, yj) of opposite sign. A

particulary relevant one is the maximin problem maxp∗1 minp∗2,p∗3 α(p∗1, p
∗
2, p
∗
2) for continuous guts,

which is achieved at two different values of (p2, p3); see Figure 2. As the function α has a single
critical point at p∗j = 1/

√
2, the maximin cannot be a critical point at either of the optimal values

of (p∗2, p
∗
3), as indeed is clear from the figure. Note that this is connected with nonconvexity of α in

(p2, p3), as otherwise argminp2,p3 would be connected, and so, as dimension of p1 is m = 1, there
would be a critical maximin by Proposition A.1.

Remark A.3. As concerns the standard Minimax problem min(x2,...,xn) maxx1 Ψ(x) :=
∑

i1,...,in
xiPi1,...,in)

arisining the asynchronous player 2-n vs. player 1 game, n ≥ 3, Ψ is affine in x1, hence

argminΨ(·, x2∗, . . . , xn∗) = R

is connected but not unique. As n− 2 ≥ 2, Proposition A.1 thus does not apply.

A.1. Minimax and joint Nash equilibrium. It is not clear what is the relation between joint
Nash equilibrium and Minimax in general. For example, in RPS OMI, the global minimax y =
(1, 0, 0), z = (0, 1/2, 1/2) and rearrangements are joint Nash equilibria; however, the local minimax
y = (1/3, 2/3, 0), z = (1/3, 0, 2/3) is not.

Computations. For RPS OMI, the payoff function is

Ψ(x, y, z) = 2y · z − x · (y + z),

The global minimax at y∗ = (1, 0, 0), z∗ = (0, 1/2, 1/2) gives Ψ(x, y∗, z∗) = −(x1 + x2/2 + x3/3),
hence the best response for player one is (0, α, β) for arbitrary α, β. Varying z = (h, 1/2 − h −
k, 1/2 + k), with h > 0 and k small, gives

Ψ(x∗, y∗, z)−Ψ(x∗, y∗, z∗) = (2− α)h+ k(α− β).

Thus, (x∗, y∗, z∗) is a joint Nash equilibrium only if the above quantity is nonnegative for all such
h, k. This gives, first, setting h = 0, that α = β, hence the only candidate is x∗ = (0, 1/2, 1/2).
Then, Ψ(x∗, y∗, z)−Ψ(x∗, y∗, z∗) = 3h/2 ≥ 0, as required.

A similar computation shows that the best response for x with y∗, z∗ fixed is x∗ as well, as,
setting x = (h, 1/2− h+ k, 1/2− k), h > 0, we have

Ψ(x, y∗, z∗)−Ψ(x∗, y∗, z∗) = −(x− x∗) · (1, 1/2, 1/2) = −
(
h+ (k − h)/2− k/2

)
= −h/2 ≤ 0.

Finally, settinng y = (1− h− kh, k), with h, k ≥ 0 gives

Ψ(x∗, y, z∗)−Ψ(x∗, y∗, z∗) = h+ k ≥ 0,

completing the verification that (x∗, y∗, z∗) is a joint Nash equilibrium.
The local minimax at ỹ = (1/3, 0, 2/3), z̃ = (1/3, 2/3, 0) gives Ψ(x, ỹ, z̃) = −4/9 independent of

x. But, then,

Ψ(x, y, z) = −4/9 + x · (y − ỹ + z − z̃).
Setting y = (1/3 − h, 0, 2/3 + h) and varying h shows that this is a joint Nash equilibrium only
if x1 = x3. Setting y = (1/3 − h, 2/3 + h, 0) and varying h shows that x1 = x2, so that x̃ =
(1/3, 1/3, 1/3) is the only candidate. But, then, Ψ(x̃, y, z̃) = 2y · z̃ − 2/3, which is minimized at
value −2/3 for y = (0, 0, 1). Hence, this is not a joint Nash equilibrium.
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Remark A.4. By Remark relrmk, for the standard Minimax problem min(x2,...,xn) maxx1 Ψ(x) :=∑
i1,...,in

xiPi1,...,in) arisining the asynchronous player 2-n vs. player 1 game, n ≥ 3, Ψ is affine in
x1, hence an interior critical point is a joint Nash equilibrium. However, again by Remark relrmk,
an interior Minimax for such a game is not necessarily a joint Nash equlibrium.

Conclusions: It is not clear to us whether there is any useful general relation beteen joint
Nash equilibria and Minimax points. Nor is it clear that joint Fictitious play converges. However,
one may always compute them and afterward see if they correspond to Minimaxima. This issue
is one that seems interesting for further investigation. A second important question is the issue
of which joint Nash equilibria are attracting under the dynamics of joint Fictitious play. Both of
these apparently system-by-system questions would be very interesting to treat in a general way.

Appendix B. Evolution of recursive strategies

As an interesting side note, we conclude by a general discussion about recursive games and how
optimal strategies may change over successive rounds. For an example, consider the 2× 2 recursive
game

(B.1) α =

(
1 −1
−1 1

)
+ α0

(
1 1
1 1

)
, β = β0

(
1 1
1 1

)
,

with α0, β0 > 0, β0 < 2. Denote the P1 strategy by 0 ≤ x ≤ 1, the probability of picking strategy
1. Then, the optimum one-shot strategy for player 1 is evidently x = 1/2, returning values α = α0,
β = β0/2. If repeated indefinitely, this would give recursive value

(B.2) Voneshot := α/(1− β) = α0/(1− β0/2).

To investigate recursive strategies, set h = x − 1/2, taking without loss of generality (by sym-
metry) 0 ≤ h ≤ 1/2. Then, the payoff matrix presented to P2 for a given V ≥ 0 is

(B.3) xT (α+ βV ) =
(
α0 + V β0/2 + (V β0 + 2)h α0 + V β0/2 + (V β0 − 2)h

)
,

and the best P2 response evidently strategy 2, for a return to P1 of

(B.4) α0 + V β0/2 + (V β0 − 2)h.

We see that so long as V β0 < 2, the best play for P1 is the one-shot strategy h = 0, returning
α0 + V β0/2. If

(B.5) Voneshotβ0 < 2,

therefore, the oneshot strategy is always best, and the ultimate recursive return is Voneshot above.
However, if (B.5) fails, or

(B.6) α0β0 + β0 > 2,

then eventually the optimal strategy for (B.3) will switch to h = 1/2, or x = 1, giving a return of

α0 + V β0/2 + (V β0 − 2)/2 = α0 + V β0 − 1.

For β0 < 1 (so that by (B.6) α0 > 1), this payoff converges to

V∗ :=
α0 − 1

1− β0
> Voneshot.

For β0 ≥ 1, it diverges to +∞.
This seems quite illustrative for discrete games. For, we see that, generally, movement h away

from the P2 optimum gives a penalty of linear order h, which balances against a benefit of order
hV . Thus, if V is small enough, there is no incentive to modify the one-shot game strategy. On
the other hand, if V grows large enough, the optimum strategy will switch.
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B.1. A model for continuous Guts. The situation is a bit different for continuous games like
guts. Based on our observations regarding optimal strategies in Section 5.4.1, let us consider a
simplified model for synchronous coalition continuous guts, in which we require that P2-3 use a
mixture of strategies (q1, q1) and (0, q2), weighted as y, (1− y). Meanwhile we require that P1 use
a pure strategy p. Then, the one-shot game becomes minimizing over (y, q1, q2) the maximum over
p of payoff function

(B.7) Ψ(y, p, q1, q2) := yα(p, q1, q1) + (1− y)α(p, 0, q2),

or

(B.8) min
(y,q1,q2)

max
p

Ψ(y, p, q1, q2),

with Ψ as in (B.7).
This is a much less computationally intensive problem than the full minimization problem, and

should be accessible by BFG, gradient descent, or simple discretization/comparison.
Note in this situation that there is a new possibility of modifying qj , for which the resulting

payoff change is C2. In that case, the accounting changes, since penalties will be order −ch2 and
benefits still linear order dV h. So this suggests that optimal strategy is

h ≈ dV/c,
leading to a recursive strategy different from the one-shot version, even for V � 1 as it is seen
numerically to be.

Conjecture: Based on this back-of-the-envelope computation, we guess that the recursive strat-
egy for continuous guts does change from the one-shot optimum, but only order V ≈ 0.013. If we
discretize the game, then things become again a bit different: for sufficiently fine discretization,
this conclusion should persist, but for coarser grid the one-shot strategy should remain optimum
throughout play. The above model computations suggest how finely we must discretize in order that
the recursive strategy evolve, namely, so that neighboring q values are less than order V apart...
At our current discretization of N = 50 or N = 100, they are only 0.02 or 0.01 appart, right on the
boundary. And, indeed, numerical experiments show little if any evolution over different rounds of
play for this level of refinement.

B.2. Rigorous optimum for continuous recursive Guts. The above questions can be an-
swered analytically by the following extension of Proposition 5.11.

Proposition B.1. For continuous recursive 3-player Guts α + V β, with V sufficiently small, the
best response function is

(B.9) RV (p∗1) min{αVa (p∗1), α
V
b (p∗1)},

where

(B.10)
αVa := (pa3(V )− p∗1)(4pa3(V )2 − 2) + V (2− p∗1 − 2pa3(V ) + 2p∗1p

a
3(V )2),

αVb := 2p∗1 − pb3(V ) + pb3(V )3 − 3(p∗1)
2pb3(V ) + V (2− p∗1 − pb3(V )),

with

(B.11)

pa3(V ) := (1 + V )(
√

(2− V )2(p∗1)
2 + 6(1 + V )− (2− V )p∗1)

−1,

p
(
3V ) :=

√
3(p∗1)

2 + 1 + V

3

)
,

hence the recursive synchronous value map is given by

(B.12) T (V ) = max
p∗1

min{αVa (p∗1), α
V
b (p∗1)}.
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Figure 21. Blowup of graph plotting best response αVa and αVb vs. p∗1, for V =

−0.13. Maximin occurs at p∗1 ≈ 0.6445, α ≈ −0.0131, at intersection of αVa and αVb .

Proof. As in the proof of Proposition 5.11 given in [CCZ, Prop. 6.8], we observe that for p∗1 6≤ p∗2, p∗3,
the Hessian of α(p∗1, ·, ·) with respect to p∗2, p

∗
3 has negative determinant, and so there can be no local

minima. For p∗1 ≤ p∗2, p∗3, on the other hand, the Hessian is positive definite and so the local minimum
of α on this region may be found at an interior critical point. Setting (α+V β)p∗2 = (α+V β)p∗3 = 0,

and solving, we readily find that p∗2 = p∗3 = pa3(V ), with pa3(V ) ≥ p∗1 so long as p∗1 ≤ 1/
√

2 +O(V ).
Indeed, that p∗2 = p∗3 at a unique critical point may be deduced already by strict convexity together
with symmetry in p∗2 and p∗3.

The only other candidates for minima are at boundaries p∗2 or p∗3 equal 0 or 1. Case by case
comparison eliminates all but α(p∗1, 0, p

b
3(V )), with 0 = p∗2 ≤ p∗1 ≤ pb3(V ). Here, pb3(V ) is found by

setting to the derivative with respect to p3 of α(p∗1, 0, p3) and solving for p3. Finally, we observe

that for p∗1 ≥ 1/
√

2+O(V ), so long as V is sufficiently small, that αVa (p∗1) > αVb (p∗1), so that formula

(B.9) remains correct even though αVa (p∗1) is no longer a valid local minimum.5 �

Remark B.2. In practice, we may determine whether V is small enough by examining the graphs

of αVa and αVb and verifying their respective positions for p∗1 ≥ poptimum1 , where poptimum1 is defined

as the maximum value of (B.12) obtained as the intersection on p∗1 ∈ [0, 1] of the graphs of αVa and
αVb . For continuous guts poker, the fixed point V ≈ −0.013 of T (determined in [BLPWZ]) is more
than small enough.

As illustrated in Figure 21, the optimal strategy for player 1 indeed changes as V goes from
V = 0 to the approximate fixed point V = −0.13, going from the value p∗1 ≈ .6436 for V = 0,
with T (V ) ≈ −.005576 to p∗1 = .6445 for V = −.013, with T (V ) = −.013124. Hence, the one-shot
strategy is not optimal for the recursive synchronous coalition game.

As noted in [BLPWZ], however, the optimal recursive strategy may be used for all rounds of the
game to achieve the optimum value. That is, though the best response evolves with time, it is not
necessary to vary the player 2-3 strategy in order to achieve the optimal result. (Examples given
in [BLPWZ] show that this is necessary for some games, but not others.)

5This last repairs a minor omission in [CCZ], where the final point was not addressed.
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B.2.1. Alternative method. Alternatively, defining pm1 (V ) to be the optimal strategy for player 1,
defined by

(B.13) (αVa − αVb )(pm1 (V )) = 0,

we find by the implicit function theorem that, for V sufficiently small,

(B.14) (d/dV )pm1 (V ) = −
(d/dV )(αVa − αVb )

(d/dp1)(αVa − αVb )
|(V,pm1 (V ).

Here, we are recalling from our previous calculations that (d/dp1)(α
V
a − αVb )|(0,pm1 (0) ≈ 1.6 > 0.

Computing

(d/dV )(αVa − αVb )|(0,pm1 (0) 6= 0,

we find therefore that the optimal player 1 strategy pm1 (V ) indeed evolves nontrivially with V .

B.2.2. Conclusion. From the above computations, we may conclude as conjectured, that the opti-
mal strategies for continuous guts do evolve with the round of play, and indeed from the very first
round. The change in strategy between V = 0 and the final value V ≈ −0.013 is ≈ .001, that
is, with respect to a change in V of order 0.1, which likewise corresponds with conjecture. This
is convincing that evolution actually does take place, but a delicate computation that would be
difficult to confirm with numerics alone.

Appendix C. Numerical protocol

1. Numerical Simplification. Evaluation of objective function (inner loop). In both Maximin
and Minimax, this part is straightforward, as the inner minimum (resp. maximum) is attained
at pure strategy pairs (resp. single strategies), hence may be obtained by simple comparison as
recorded in (6.1) (resp. (6.2)). This costs N2 (resp. N) functional evaluations, of complexity N
(resp. N2) apiece, for total computational cost of order N3, which is negligible for these problems.

2. Optimization Methods. When computing the minimax, we primarily use two optimization
methods: Broyden-Fletcher-Goldfarb-Shanno (BFGS), and Sequential Least Squares Programming
(SLSQP). BFGS is a quasi-newton type method that uses an approximation for the hessian which
improves every step. BFGS is among the most widely used optimization method today, and has
shown incredible efficiency in complex high dimensional problems. Thus it is a natural starting point
for our analysis. SLSQP is another quasi newton method highly related to BFGS, but adjusted to
handle equality constraints. In terms of computation cost per iteration, SLSQP is many times more
time expensive than BFGS. Additional detailed references can be found REF for BFGS and REF
for SLSQP. In both cases we use the scipy python package (CITE SCIPY) as our implementation
of the methods.

3. Smoothing. When computing a minimax (or maximin) problem, it is appropriate to replace
the inner max (or min) with a smooth approximant in order to increase the accuracy of the min-
imization procedure (in fact most minimization methods we employ require C1 regularity of the
inner function). We do this with two distinct methods, `p smoothing and softmax smoothing. For
`p smoothing, we use the approximate maximum function given by

(C.1) max
i
xi ≈

(∑
i

(xi + 1)p

) 1
p

− 1

by taking p negative, we can approximate the minimum function the same way. The shift up by
1 allows us to use negative p values without worrying about dividing by 0, since in our setting
0 ≤ xi ≤ 1. It also generally helps with underflow issues since our values are between 0 and 1. The
accuracy of the approximation is increased as |p| → ∞.
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The softmax method meanwhile uses the approximation

(C.2) max
i
xi ≈

∑
i

xie
xi
ε∑

j e
xj
ε

where the ε is a tunable parameter similar to p in the `p smoothing example above. In this case
the approximation becomes exact as ε→ 0.

4. Constraints. The BFGS routine is supported in SciPy with interval-type constraints xi ≥
0, but not linear inequalities

∑N−1
j=1 ≤ 1 such as we require. We repair this by introducing a

penalty term −K|(
∑N−1

j=1 −1)+|p (resp. +K|(
∑N−1

j=1 −1)+|p), K � 1, p ≥ 1, in the Maximin (resp.

Minimax) objective function, loosely following [AY]. We refer to these constraints as softly enforced.
Continuation-type routines in SciPi and NashPy do support linear inequalities so can be used “as
is”, we refer to these constrainst as hard enforced. Additionally, we note that in [AY], convergence
is proven for p = 2, which is what we use in our experiments.

5. Fictitious Play. Fictitious Play is a numerical algorithm for finding the Nash Equilibrium of
a matrix game, or any game with a well defined best response function. This method is initialized
with two players playing a random strategy. Then at each following iteration, each player plays the
best response to the mixed strategy derived by all their opponents previous plays. This method
is not guaranteed to converge, but if it does converge to a particular strategy distribution, it is
guaranteed that the distribution represents a mixed nash equilibrium. This algorithm can also be
adjusted to three player games, but does not have the same guaranteed convergence.

Appendix D. Experiments with Random Games I Tables

The following tables contain the results of the numerical experiments described in section 7.
These experiments test three numerical methods: Fictitious Play, SLSQP, and BFGS with three
different smoothing methods: no smoothing, `p smoothing, and softmax smoothing. All these
procedures are described in detail in Appendix C.

For each of `p smoothed and softmax, we perform runs with several parameter values. For `p, we
run p = 1, 10, 50, 100, 200, 300, 400, 500. For the softmax method, we run with ε = 1, .5, .25, .0125, 1e−
4, 1e−5, 1e−6, 1e−7, 1e−8. In the charts below, we show only the parameter value which produced
the lowest error as described below. In addition, we run Fictitious play with iterations equal to
3000, 5000, 12000, 35000, 80000, 1000000, 4000000, 12000000. For Fictitious Play, we display only
the parameters which yielded similar runtimes to either `p or softmax.

To measure accuracy, we additionally compute the maximin by running the same procedure on
the negative transpose of the payoff matrix. If perfectly accurate, this will yield the same result
as for the minimax. Thus we use this Value Gap as a benchmark for accuracy. However this
benchmark does not work for Fictitious Play, which computes the value without reference to the
minimax/maximin structure.

(KZ EDIT HERE PLEASE, SOMETHING ABOUT GUARANTEED ACCURACY OF FIC-
TITIOUS PLAY APPENDED TO PREVIOUS PARAGRAPH ) Notes from before: However it is
known that the GAP for fictitious play is less than 1/number of iterations Cite Julia Robinson.
But not available by running directly from FP (Value lies between minimax and maximin always.
But unknown where) Can compare to other methods in the table... Also relatively insensitive to
N. Just depends through cost of functional evaluation O(N3)/tolerance as tolerance is like 1/M ,
M number of iterations.

(THEN ALSO MERGE THIS WITH ABOVE PARAGRAPH) In the following we report the
absolute value gap, but this error can also be interpreted as relative since the matrices have entries
normalized to magnitude one. Additionally we report the computational time for each method.
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N=2
Method Smoothing Parameter Value Value Gap Time

Ficitious Play N/A 3000 -0.70624 N/A 0.14133
SLSQP None N/A -0.70624 5.2425e-13 0.16047
BFGS None N/A -0.70624 2.8091e-06 0.002279
SLSQP `p 100 -0.70624 5.2425e-13 0.15599
BFGS `p 10 -0.70624 2.5208e-06 0.0041604
SLSQP Softmax .0125 -0.70624 5.2425e-13 0.17692
BFGS Softmax .5 -0.70624 2.3358e-06 0.0021272

N=4
Method Smoothing Parameter Value Value Gap Time

Fictitious Play N/A 12000 -0.0019507 N/A 0.44446
SLSQP None N/A 0.014475 0.040802 1.0221
BFGS None N/A -0.0019212 7.0959e-07 0.058216
SLSQP `p 500 -0.00028436 0.0034422 0.28614
BFGS `p 400 0.00012546 0.0043043 0.024751
SLSQP Softmax 1e-5 -0.0019133 1.0477e-05 0.6283
BFGS Softmax 1e-7 -0.0019213 4.2996e-08 0.06435

N=8
Method Smoothing Parameter Value Value Gap Time

Fictitious Play N/A 12000 -0.14168 N/A 0.4448
SLSQP None N/A -0.086871 0.077539 0.91074
BFGS None N/A -0.10877 0.090801 0.04243
SLSQP `p 500 -0.14038 0.0025014 0.22348
BFGS `p 400 -0.14006 0.0031443 0.034575
SLSQP Softmax 1e-5 -0.14156 2.5678e-05 1.0319
BFGS Softmax 1e-4 -0.14157 3.0448e-05 0.047931

N=16
Method Smoothing Parameter Value Value Gap Time

Fictitious Play 12000 0.023029 N/A 0.44602
SLSQP None N/A 0.093545 0.16301 1.0236
BFGS None N/A 0.080021 0.12615 0.14645
SLSQP `p 500 0.025604 0.0050109 1.0203
BFGS `p 300 0.027136 0.0084286 0.28557
SLSQP Softmax 1e-4 0.023402 6.4928e-05 1.4684
BFGS Softmax 1e-4 0.023864 0.0039738 0.45736

N=32
Method Smoothing Parameter Value Value Gap Time

Fictitious Play N/A 35000 -0.012266 N/A 1.3075
SLSQP None N/A 0.080816 0.17485 1.7749
BFGS None N/A 0.064499 0.13081 0.26525
SLSQP `p 500 -0.0089836 0.0053671 2.8667
BFGS `p 300 -0.0057636 0.010865 1.282
SLSQP Softmax .0125 -0.0070011 0.0095071 1.0497
BFGS Softmax .0125 -0.0067932 0.010705 0.41066
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N=64
Method Smoothing Parameter Value Value Gap Time

Fictitious Play N/A 1000000 -0.0013476 N/A 38.995
SLSQP None N/A 0.05408 0.10792 7.0172
BFGS None N/A 0.067929 0.14123 0.25405
SLSQP `p 500 0.0011084 0.0055256 26.15
BFGS `p 200 0.023682 0.049482 2.6399
SLSQP Softmax .0125 0.0032562 0.010004 14.329
BFGS Softmax .0125 0.023841 0.052561 0.3972

N=128
Method Smoothing Parameter Value Value Gap Time

Fictitious Play N/A 1000000 0.0041705 N/A 54.768
SLSQP None N/A 0.063219 0.12336 18.022
BFGS None 0 0.083172 0.16983 0.30773
SLSQP `p 500 0.0077296 0.0069334 265.16
BFGS `p 500 0.054236 0.10957 0.37022
SLSQP Softmax .0125 0.010702 0.012289 54.849
BFGS Softmax .0125 0.050734 0.097304 0.52501

N=256
Method Smoothing Parameter Value Value Gap Time

Fictitious Play N/A 1000000 0.0021377 N/A 62.468
SLSQP None N/A 0.053226 0.1018 58.093
BFGS None N/A 0.092248 0.16708 0.38451
SLSQP `p 500 0.0056138 0.0067225 723
BFGS `p 500 0.047917 0.097521 1.9243
SLSQP Softmax .0125 0.0085595 0.012295 140.57
BFGS Softmax .0125 0.050234 0.10204 0.57419
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[GHPS2] A. Gilpin, S. Hoda, J. Penã, and T. Sandholm First-order algorithm with O(ln(1/ε)) convergence for
ε-equilibrium in two-person zero-sum games, Math. Program. 133 (2012), no. 1-2, 279–298.

[Gi] Github link, TODO.
[G] D. Goldfarb, A Family of Variable Metric Updates Derived by Variational Means, Mathematics of Com-

putation, 24 (109) (1970), 23–26, doi:10.1090/S0025-5718-1970-0258249-6
[H] Q. Huangfu, J. A. J. Hall (2018), Parallelizing the dual revised simplex method, TODO (journal, etc?)
[N] J.F. Nash, Non-Cooperative Games, Annals of Mathematics Second Series, Vol. 54, No. 2 (Sep., 1951),

pp. 286–295.
[NPy] Nashpy documentation, https://nashpy.readthedocs.io/
[Ne] A. Nemirovsky (2004). Interior point polynomial-time methods in convex programming, TODO, journal.
[O] G. Owen, Game theory, Third edition. Academic Press, Inc., San Diego, CA, 1995. xii+447 pp. ISBN:

0-12-531151-6.
[R] J. Robinson, An Iterative Method of Solving a Game, Annals of Mathematics 54 (1959) 296–301.
[SPy] Scipy documentation, ttps://docs.scipy.org/doc/
[S] D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of Compu-

tation, 24 (111) (1970), 647–656, doi:10.1090/S0025-5718-1970-0274029-X
[Sh3] L.S. Shapley, Some Topics in Two-Person Games. In Advances in Game Theory M. Dresher, L.S. Shapley,

and A.W. Tucker (Eds.), Princeton: Princeton University Press (1968).
[vN] J. Von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928) 295–320.
[WD] D. Wales, J Doyle (1998), Global Optimization by Basin-Hopping and the Lowest Energy Structures of

Lennard-Jones Clusters Containing up to 110 Atoms, TODO (journal, etc?)

Indiana University, Bloomington, IN 47405
Email address: kevbuck@iu.edu

Indiana University, Bloomington, IN 47405
Email address: jt103@iu.edu

Bowdoin, TODO
Email address: ldichter@bowdoin.edu

University of Wisconsin, Madison, TODO
Email address: djiang38@wisc.edu

Indiana University, Bloomington, IN 47405
Email address: kzumbrun@iu.edu

44


